
Analysis of a time-series of benthic imagery from the South-east Marine Parks Network

Nicholas Perkins, Jacquomo Monk, Neville Barrett

Contents

Li	List of Tables					
Li	ist of Figures					
A	cknov	vledger	nents	11		
E>	kecuti	ive sum	mary	12		
1	Int	troduct	ion	16		
2	Μ	ethods		19		
	2.1	Over	view	19		
	2.2	Мар	ping	19		
	2.3	Scor	ing	19		
	2.3	3.1	Initial baseline scoring	19		
	2.3	3.2	Additional and targeted scoring	20		
	2.4	Data	analysis	20		
	2.4	4.1	Description of sites and biological communities present	20		
	2.4	4.2	Comparison of variability of individual morphospecies across the time series to date 21	ĩ		
	2.4	4.3	Analysis of temporal trends for dominant morphospecies	22		
	2.4	4.4	Power analysis	25		
	2.4	4.5	Analysis of targeted scoring data	27		
	2.4	4.6	Comparison of scoring approaches	27		
3	Re	esults		28		
	3.1	Desc	ription of marine parks, sites, and biological communities present	29		
	3.:	1.1	Huon Marine Park	29		
	3.	1.2	Freycinet Marine Park	38		
	3.:	1.3	Flinders Marine Park	45		
	3.	1.4	Beagle Marine Park	63		
	3.2	Varia	ability in cover across the time series: Population variability	67		
	3.3	Mult	ivariate analysis of trend	69		
	3.4	Anal	ysis of temporal trends for dominant morphospecies	71		
	3.4	4.1	Arborescent Grey	71		
	3.4	4.2	Arborescent Orange	74		
	3.4	4.3	Arborescent Orange Thin	77		
	3.4	4.4	Ascidian Colonial Purple	80		
	3.4	4.5	Bramble Coral	82		
	3.4	4.6	Branching Gray Fine Repent Like			
	3.4	4.7	Bryozoa Soft (merged)	88		

3.4.8	Bryozoa Stumpy Hard	
3.4.9	Calcareous Encrusting Red Algae	
3.4.10	Coral Orange Solitary (Caryophyllia like)	
3.4.11	Cup Red Smooth	100
3.4.12	Cup Yellow	103
3.4.13	Encrusting Beige Oscula	106
3.4.14	Encrusting Beige Smooth	110
3.4.15	Encrusting Black	114
3.4.16	Encrusting Blue	118
3.4.17	Encrusting Light Orange	
3.4.18	Encrusting Orange	
3.4.19	Encrusting Purple Lumpy	128
3.4.20	Encrusting White	
3.4.21	Encrusting White Lumpy	135
3.4.22	Encrusting Yellow Smooth	138
3.4.23	Epizoanthus sp	
3.4.24	Fan Pink	
3.4.25	Gorgonian Red	
3.4.26	Hydroid White	151
3.4.27	Lumpy White	155
3.4.28	Massive Blue Shapeless	158
3.4.29	Massive Purple	
3.4.30	Non-Calcareous Encrusting Red Algae	
3.4.31	Palmate Grey	166
3.4.32	Purple Massive	169
3.4.33	Repent Orange	172
3.4.34	Repent Yellow	175
3.4.35	Simple Beige Lumpy	179
3.4.36	Simple Beige Lumpy Shapeless	
3.4.37	Unstalked Crinoids	186
3.5 Sur	mmary of significant linear trends for dominant morphospecies	189
3.6 Pov	wer analysis	
3.6.1	Power to detect a 50% decline in cover	
3.6.2	Power to detect change over a longer time frame	194
3.6.3	Power to detect different levels of change	198
3.7 Tar	geted scoring	199

	3.7.1	1 Flinders Western Boundary	
	3.7.2	2 Joe's Reef	
Э	.8	Comparison of scoring approaches	
	3.8.1	1 Flinders Western Boundary	
	3.8.2	2 Joe's Reef	
4	Disc	sussion	
Z	.1	Variability in cover of dominant morphospecies	
Z	.2	Linear trends in the cover of important morphospecies	
Z	.3	Choosing indicators	
Z	.4	Scoring approaches and monitoring design	
Rec	omme	endations	
Ар	pendix	A: Table of all AUV sites in the SE Marine Parks Network	
Ар	pendix	x B: Example images from sites	
	Huoi	n Marine Park site 1	
	Huoi	n Marine Park site 2	
	Joe's	s Reef	
	Frey	cinet Marine Park site 2	
	Flind	ders Northwest	
	Flind	ders Outer Patch Reef	
	Flind	ders Western Boundary	
	Flind	ders Shallow Grids	
	Flind	ders Canyon Grids North	
	Beag	gle Mid Shelf 3	
Ар	pendix	x C: Potential indicators for the SE Marine Parks Network	

List of Tables

Table E1 Summary of sites that formed part of the project, including descriptions of habitat and fauna and scoring completed. Details of all AUV sites across the SE Network are given in Appendix A. Error! Bookmark not defined. Table 2.4.1 List of 37 morphospecies for which analysis of temporal trends within each marine park were conducted. All species included had at least 0.5% cover within a site in a survey period. Bryozoa soft were merged for analysis. Details of the marine parks and number of sites where the morphospecies was found to be present are provided. Example images of each morphospecies is Table 3.2.1 Results of the population variability (PV) analysis. PV values were calculated from modelbased estimates of cover each year within each marine park. The overall PV value (All AMPs) is the average of the PV value across each marine park it occurs. Morphospecies have been ordered from Table 3.5.1 Summary of significant linear trends found for the dominant 37 morphospecies modelled. Green shading indicates a significant positive linear trend, red a significant negative linear trend. Unshaded cells indicate no linear trend was detected. Percentages in shaded cells are the magnitude of the linear change expressed as the change in odds of presence per year. Shading in depth cell indicates whether significant association with depth were detected i.e. red = negative,
 Table 3.7.1 Summary of targeted scoring at Flinders Western Boundary.
 199

List of Figures

Figure 3.1.1 Overview map of Huon Marine Park. Details of non-repeated transects not included in
this study are given in Appendix A
Figure 3.1.2 Site level map of Huon Marine Park site 1
Figure 3.1.3 Top 30 morphospecies scored at Huon Marine Park Site 1. Substrate categories, mobile
species and biological matrix categories were excluded
Figure 3.1.4 Species accumulation curve for Huon Marine Park site 1
Figure 3.1.5 Site level map of Huon Marine Park site 2
Figure 3.1.6 Top 30 morphospecies scored at Huon Marine Park Site 2. Substrate categories, mobile
species and biological matrix categories were excluded
Figure 3.1.7 Species accumulation curve for Huon Marine Park site 2
Figure 3.1.8 Overview map of Freycinet Marine Park. Details of non-repeated transects not included
in this study are given in Appendix A
Figure 3.1.9 Site level map of Joe's Reef
Figure 3.1.10 Top 30 morphospecies scored at Joe's Reef. Substrate categories, mobile species and
biological matrix categories were excluded 40
Figure 3.1.11 Species accumulation curve for Joe's Reef
Figure 3.1.12 Site level map of Freycinet Marine Park site 2
Figure 3.1.13 Top 30 morphospecies scored at Freycinet Marine Park Site 2. Substrate categories,
mobile species and biological matrix categories were excluded
Figure 3.1.14 Species accumulation curve for Freycinet Marine Park site 2
Figure 3.1.15 Overview map of Flinders Marine Park. Details of non-repeated transects not included
in this study are given in Appendix A 45
Figure 3.1.16 Site level map of Flinders Northwest

Figure 3.1.17 Top 30 morphospecies scored at Flinders Northwest. Substrate categories, mobile	
species and biological matrix categories were excluded.	48
Figure 3.1.18 Species accumulation curve for Flinders Northwest.	49
Figure 3.1.19 Site level map of Flinders Outer Patch Reef	50
Figure 3.1.20 Top 30 morphospecies scored at Flinders Outer Patch Reef. Substrate categories,	
mobile species and biological matrix categories were excluded.	51
Figure 3.1.21 Species accumulation curve for Flinders Outer Patch Reef.	52
Figure 3.1.22 Site level map of Flinders Western Boundary.	53
Figure 3.1.23 Top 30 morphospecies scored at Flinders Western Boundary. Substrate categories,	
mobile species and biological matrix categories were excluded.	55
Figure 3.1.24 Species accumulation curve for Flinders Western Boundary	55
Figure 3.1.25 Site level map of Flinders Shallow Grids.	56
Figure 3.1.26 Top 30 morphospecies scored at Flinders Shallow Grids. Substrate categories, mobi	le
species and biological matrix categories were excluded.	57
Figure 3.1.27 Species accumulation curve for Flinders Shallow Grids.	58
Figure 3.1.28 Site level map of Flinders Canyon Grids North	59
Figure 3.1.29 Top 30 morphospecies scored at Flinders Canon Grids North. Substrate categories,	
mobile species and biological matrix categories were excluded.	61
Figure 3.1.30 Species accumulation curve for Flinders Canyon Grids North.	62
Figure 3.1.31 Overview map of Beagle Marine Park. Details of non-repeated transects not include	ed
in this study are given in Appendix A.	63
Figure 3.1.32 Site level map of Beagle Mid-Shelf 3	64
Figure 3.1.33 Top 30 morphospecies scored at Beagle Mid Shelf 3. Substrate categories, mobile	
species and biological matrix categories were excluded.	65
Figure 3.1.34 Species accumulation curve for Beagle Mid-Shelf 3	66

Figure 3.3.1 Multi-dimensional scaling (MDS) plot for all sites across all years surveyed. Only sessile
morphospecies were included69
Figure 3.4.1 Site level trends in the raw data for Arborescent Grey sponges
Figure 3.4.2 Site level trends in the raw data for Arborescent Orange sponges
Figure 3.4.3 Site level trends in the raw data for Arborescent Orange Thin sponges
Figure 3.4.4 Site level trends in the raw data for Ascidian Colonial Purple
Figure 3.4.5 Site level trends in the raw data for Bramble Coral (A. kareni like)
Figure 3.4.6 Site level trends in the raw data for Branching Gray Fine Repent like sponges
Figure 3.4.7 Site level trends in the raw data for Bryozoa Soft (merged)
Figure 3.4.8 Site level trends in the raw data for Bryozoa Stumpy Hard
Figure 3.4.9 Site level trends in the raw data for Calcareous Encrusting Red Algae
Figure 3.4.10 Site level trends in the raw data for Coral Orange Solitary (Caryophyllia like)
Figure 3.4.11 Site level trends in the raw data for Cup Red Smooth sponges
Figure 3.4.12 Site level trends in the raw data for Cup Yellow sponges
Figure 3.4.13 Site level trends in the raw data for Encrusting Beige Oscula sponges
Figure 3.4.14 Site level trends in the raw data for Encrusting Beige Smooth sponges
Figure 3.4.15 Site level trends in the raw data for Encrusting Black sponges
Figure 3.4.16 Site level trends in the raw data for Encrusting Blue sponges
Figure 3.4.17 Site level trends in the raw data for Encrusting Light Orange sponges
Figure 3.4.18 Site level trends in the raw data for Encrusting Orange sponges
Figure 3.4.19 Site level trends in the raw data for Encrusting Purple Lumpy sponges
Figure 3.4.20 Site level trends in the raw data for Encrusting White sponges
Figure 3.4.21 Site level trends in the raw data for Encrusting White Lumpy sponges
Figure 3.4.22 Site level trends in the raw data for Encrusting Yellow Smooth sponges
Figure 3.4.23 Site level trends in the raw data for Epizoanthus sp
Figure 3.4.24 Site level trends in the raw data for Fan Pink sponges

Figure 3.4.25 Site level trends in the raw data for Gorgonian Red.	. 148
Figure 3.4.26 Site level trends in the raw data for Hydroid White	. 151
Figure 3.4.27 Site level trends in the raw data for Lumpy White sponges	. 155
Figure 3.4.28 Site level trends in the raw data for Massive Blue Shapeless sponges	. 158
Figure 3.4.29 Site level trends in the raw data for Massive Purple sponges	. 161
Figure 3.4.30 Site level trends in the raw data for Non-Calcareous Encrusting Red Algae	. 164
Figure 3.4.31 Site level trends in the raw data for Palmate Grey sponges.	. 166
Figure 3.4.32 Site level trends in the raw data for Purple Massive sponges	. 169
Figure 3.4.33 Site level trends in the raw data for Repent Orange sponges	. 172
Figure 3.4.34 Site level trends in the raw data for Repent Yellow sponges.	. 175
Figure 3.4.35 Site level trends in the raw data for Simple Beige Lumpy sponges	. 179
Figure 3.4.36 Site level trends in the raw data for Simple Beige Lumpy Shapeless sponges	. 182
Figure 3.4.37 Site level trends in the raw data for Unstalked Crinoids.	. 186
Figure 3.6.1 Power to detect a simulated 50% decline in the Arborescent Grey sponge	
morphospecies. The dashed line is at 80% power	. 191
Figure 3.6.2 Power to detect a simulated 50% decline in the Arborescent Orange sponge	
morphospecies. The dashed line is at 80% power.	. 192
Figure 3.6.3 Power to detect a simulated 50% decline in all structure forming morphospecies. The	е
dashed line is at 80% power	. 193
Figure 3.6.4 Power to detect a simulated 75% decline over 30 years in the Red Cup Smooth	
morphospecies in Flinders Marine Park. The dashed line is at 80% power. CG = Canyon Grids Nort	th,
NW = Northwest, OP = Outer Patch Reef, WB = Western Boundary, SG = Shallow Grids	. 195
Figure 3.6.5 Power to detect a simulated 75% decline over 30 years in the Bramble Coral	
morphospecies in Flinders Marine Park. The dashed line is at 80% power. CG = Canyon Grids Nort	th,
NW = Northwest, OP = Outer Patch Reef, WB = Western Boundary, SG = Shallow Grids	. 197

Figure 3.7.1 Map showing changes in count of Bramble Coral at Flinders Western Boundary using
targeted scoring in each year surveyed
Figure 3.7.2 Map showing changes in count of Cup Red Smooth at Flinders Western Boundary using
targeted scoring in each year surveyed
Figure 3.7.3 Map showing changes in count of Cup Red Smooth Bleached at Flinders Western
Boundary using targeted scoring in each year surveyed 204
Figure 3.7.4 Map showing changes in count of Massive Purple sponges at Joe's Reef using targeted
scoring in each year surveyed
Figure 3.7.5 Map showing changes in count of Black Coral at Joe's Reef using targeted scoring in
each year surveyed
Figure 3.8.1 Comparison of the ability of different scoring approaches to detect a simulated 50%
decline in Cup Red Smooth and Bramble Coral at Flinders Western Boundary. Dashed line is at 80%
power
Figure 3.8.2 Comparison of the ability of different scoring approaches to detect a simulated 50%
decline in Massive Purple Sponges and Black Corals at Joe's Reef Dashed line is at 80% power 212

Acknowledgements

The authors would like to thank all the agencies that have been involved in the ongoing support of the Autonomous Underwater Vehicle (AUV) monitoring program including the Integrated Marine Observing System (IMOS), the National Environmental Science Program (NESP) and Parks Australia. Data was sourced from IMOS which is enabled by the National Collaborative Research Infrastructure Strategy (NCRIS). It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent. We are grateful for the support of the Parks Australia management team of Cath Samson, Emily Harris and Hilary Schofield who gave valuable input as the project progressed and feedback on the content of the final report. Many of the AUV deployments and some of the baseline scoring used in this project were supported by the Marine Biodiversity Hub through funding from the Australian Government's National Environmental Science Program (NESP). The NESP Marine Biodiversity Hub partners include the University of Tasmania; CSIRO, Geoscience Australia, Australian Institute of Marine Science, Museum Victoria, Charles Darwin University, The University of Western Australia, Integrated Marine Observing System, NSW Office of Environment and Heritage, and NSW Department of Primary Industries. We would also like to acknowledge the tireless effort of the team of scorers who contributed to acquiring the necessary data to complete this report: Phoebe Gallagher, Kate Fraser, German Soler, Shravan Ram Baskaran, Lisa Miller and Justin Hulls. We also thank Justin Hulls for his help in producing the high-quality maps in the report.

Executive summary

This report provides the first insights into the distribution and changes through time of deep shelf (40 – 200 metre) seafloor habitats, biological communities, and species in Australian Marine Parks across the Southeast Marine Parks Network (the SE Network). Repeat photographic surveys of the seafloor at sites within Huon, Freycinet, Flinders and Beagle Marine Parks using the Integrated Marine Observing System (IMOS) Autonomous Underwater Vehicle (AUV) facility were conducted between 2009 and 2018.. Data from this imagery was used to build knowledge of where different species occur and how their abundances have changed over the survey period. This knowledge is important for ongoing monitoring of these ecosystems, as to be able to distinguish changes that may be because of protecting these ecosystems, or driven by perturbations such as warming events, there must first be an understanding of natural variability. Knowledge of the distribution of important species and how they vary through time is also key in helping researchers and managers decide on appropriate indicators and the design of the ongoing monitoring program to ensure that resources are directed to their best use.

During this project a subset of 100 images for each repeated survey within each marine park site was scored by labelling morphospecies (species that were distinct in terms of shape and colour) occurring in the imagery using a point scoring approach. Random points placed within images were labelled, and the percent cover (a measure of abundance) of each morphospecies over the survey area was calculated across the scored images. This information allowed the imagery to be turned into quantitative data about each morphospecies and how this had changed at each year surveyed. This data was then used to model the trends that had occurred for morphospecies within each marine park and across the entire SE Network and to explore the variability over the time series. Also, the effect of scoring a larger subset of 200 images with point scoring and an alternative method of scoring all individuals for targeted morphospecies was explored at a small subset of sites. A summary of the sites included in this project, a brief description of the site and the scoring completed is presented in Table 1.

Overall, communities were found to be stable over the survey period; however, several individual morphospecies were found to have undergone significant change. Overall increases in the cover of soft bryozoans were found, particularly at Huon and Freycinet Marine Park. Declines in gorgonian red corals were also found, particularly within Freycinet and Flinders Marine Parks. However, it is currently unclear whether these or other trends detected are due to natural cycling in abundances or part of longer-term trajectories. It is recommended that morphospecies which have been found to have trends at this stage of monitoring be evaluated as new data is collected.

The targeted scoring conducted for two morphospecies at two selected sites provided further insights into the dynamics of these ecosystems and allowed a comparison of scoring approaches. Scoring of the cup red smooth morphospecies at the Flinders Western Boundary site showed that there was a significant increase in the number of bleached individuals between the 2013 and 2017. This bleaching followed a significant "marine heatwave" event in 2015/16 and therefore indicates that the bleaching of these and potentially other sponges may provide an indicator of warming events. Comparison of the different scoring approaches at the two targeted scoring sites using 100 and 200 images showed that the full count approach far outperformed the point count approach in the ability to detect change.

Simulation-based power analyses, which test the ability of different sampling designs and approaches to detect trends, were conducted for a range of morphospecies under different future scenarios of change. It was found that for more abundant morphospecies (> 0.5% cover) changes of fifty percent could be detected at the site level. Where morphospecies occurred across several sites, marine park-level changes could be detected for less abundant species by combining the data across multiple sites. This indicates that widespread morphospecies are likely to prove to be better indicators. Incorporating estimates of the variability seen in the time series to date into longer term simulated trajectories highlighted that morphospecies with higher short-term variability were likely to take a lot longer to detect changes in than those that were relatively stable. Also, simulations showed that while sampling every year would allow change to be detected in less time, less frequent revisits were still capable of detecting change.

Key recommendations from this project include:

- A list of suggested SE Network-wide and marine park-level indicators based on the knowledge gained through this project
- That short-term trends found for morphospecies in this project be investigated with future monitoring data to confirm whether significant trends continue in the long-term
- That the targeted scoring approach trialled in this project be adopted as the preferred method for individual morphospecies indicators due to the improvements in the ability to detect change for minimal additional extra scoring time
- Further exploration of the correlation between observed changes and environmental data such as warming events be investigated in order to better understand drivers of change and indicators that are suitable to track those changes
- Effort is made to score currently unscored sites to establish the spatial extent and abundance of morphospecies to aid in assessing their suitability as indicators
- The modelling and simulation approaches outlined in this report be continued and updated with new monitoring data to test whether currently identified trends continue and to adapt monitoring designs, and
- Consideration and identification of reference sites be made for future monitoring efforts to allow comparison of management actions in marine parks with outside areas.

Table E1 – Summary of sites that formed part of the project, including descriptions of habitat and scoring completed. Details of all AUV sites across the SE Network are given in Appendix A

Marine	Site Name	Depth	Habitat	When	Scoring	Fauna description
Park		(m)		surveyed	completed	
Huon	Huon Marine Park site 1	45-71	Extensive twilight rocky reef; sufficient light to support algal communities	2009, 2010, 2014	100 images with point count scoring each year	Diverse invertebrate communities, including sponges, bryozoans, gorgonians and colonial anenomes; Extensive encrusting coralline algae; Southern rock lobster common in imagery
Huon	Huon Marine Park site 1	45-71	Extensive twilight rocky reef; sufficient light to support algal communities	2009, 2010, 2014	100 images with point count scoring each year	Diverse invertebrate communities, including sponges, bryozoans, gorgonians and colonial anenomes; Extensive encrusting coralline algae; Southern rock lobster common in imagery
Huon	Huon Marine Park site 2	47-72	Extensive twilight rocky reef; sufficient light to support algal communities	2009, 2010, 2014	200 images with point- count scoring each year	Diverse invertebrate communities, including sponges, bryozoans, gorgonians and colonial anenomes; Extensive encrusting coralline algae; Southern rock lobster common in imagery
Freycinet	Freycinet MP Site 2	93-100	Sand dominated below the photic zone (dark), with low relief structure typically covered with a veneer of sand	2010, 2012, 2014, 2016	100 images with point count scoring each year.	Sand dominated region with invertebrate fauna attached to patchy areas of hard substrate including underlying shell beds; dominated by bryozoa/sponge mixed communities.
Flinders	Flinders North West	41-45	Sand dominated twilight reef with patchy areas of hard substrate and low relief features	2013, 2017	100 images with point count scoring each year.	High biodiversity site with a wide variety of sessile invertebrates including gorgonians, soft corals, sponges and bryozoans; large Mopsella gorgonian species likely to be of high conservation value.

Marine Park	Site Name	Depth (m)	Habitat	When surveyed	Scoring completed	Fauna description
Flinders	Flinders Outer Patch Reef	75-94	Sand dominated twilight reef with patchy areas of hard substrate and prominent ledge features which are often sand inundated	2011, 2013, 2017	100 images with point count scoring each year.	Diverse invertebrate community including cup sponges, erect branching sponges, encrusting sponges, gorgonians, ascidians and bryozoans
Flinders	Flinders Canyon Grids North	112-18	Dark reef with flat sandy areas punctuated with high relief rocky walls and boulders	2011, 2013, 2017	100 images with point count scoring each year.	Invertebrate fauna includes a diverse range of sponge species, hard and soft bryozoans and soft corals.
Flinders	Flinders Shallow Grids	62-78	Sand dominated twilight reef with areas of hard substrate including underlying shell beds	2011,2013, 2017	100 images with point count scoring each year.	Invertebrate fauna includes a diverse range of sponge species, gorgonians, hydroids and sea whips.

Introduction

The Institute for Marine and Antarctic Studies (IMAS) and the Integrated Marine Observing System (IMOS) have been undertaking photographic surveys of benthic (seabed) marine biota and habitats in the South-east (SE) Marine Region over the past 12 years using an Autonomous Underwater Vehicle (AUV). These surveys incorporate sites inside marine parks of the SE Network; including Beagle, Flinders, Freycinet, Huon and Tasman Fracture Marine Parks as part of a wider program monitoring changes in coastal and shelf seabed ecosystems. The AUV is used to conduct repeat photographic transect-based surveys in depths beyond SCUBA limits, and in many instances the imagery produced by these surveys has enabled the first initial quantitative description of the flora and fauna of deep coastal/shelf habitats in these areas. Repeat surveys have now been conducted across many marine park sites, providing the opportunity to develop an initial analysis and understanding of the extent that biological assemblages and individual species change in these systems over the sampling period to date (up to ten years). Currently there is little understanding regarding the extent of natural variability across deeper reef systems in the SE Marine Region, information that is critical to identifying changes associated with long-term pressures and protection and interpreting observed changes in the context of natural year to year variation and helping identify suitable indicators for change across these systems.

An understanding of variability is crucial for long-term monitoring programs that aim to detect change, as variability that is not due to the trend of interest will make detecting that change more difficult. For monitoring programs that span multiple sites through time, such as the current AUV program, variability can come from several sources, which at a minimum include:

(i) between site differences (e.g. some sites have higher abundances than others or more suitable habitat)

(ii) trends through time that are the focus of the monitoring program (e.g. a decline in species abundance due to climate change or recovery due to protection)

(iii) inter-annual or other short-term fluctuations that are not due to the trend of interest (e.g. recruitment variability or other natural fluctuations; often referred to as natural variability), and

(iv) residual variance that may come through other sources such as sampling error (Larsen et al. 2001, Urquhart 2012, Perkins et al. 2017).

For even the best-designed monitoring programs, if sources of variability that are not due to the trend of interest are large, detecting change may be impractical or take a very long time at best. For deeper reef systems, on which this study is focused, knowledge of "natural" or "baseline" rates of change is often lacking. Such changes could be due to factors such as the life history parameters of individual species such as growth and fecundity, variability in recruitment events, and the cycles on which disturbance events such as storms occur and rates of recovery from such disturbances. Typically, the only component that will be under the control of management decisions will be choices that affect residual variance, such as those around levels of sampling, the revisit plan in terms of which sites to visit and how often, and the choice of appropriate indicators for change. Therefore, gaining an understanding of variability and how it may affect monitoring outcomes is key in the early stages of establishing monitoring programs as it can help direct resources and make decisions such as the choice of indicators that will affect longer term outcomes.

Selecting appropriate indicators provides a challenging task for deeper water ecosystems where knowledge of baseline variability and likely levels of response to pressures of interest is typically lacking (Hayes et al. 2015). Ideally, indicators should be characteristic of a region or habitat being monitored, respond predictably to a pressure of interest, have low natural variability and be sufficiently abundant that sampling variability introduces minimal additional noise (Noss 1990, Niemi and McDonald 2004). As the SE marine region is a global warming 'hotspot' (Ridgeway 2007, Oliver et al. 2018), the impacts of warming or marine heatwave events (see Oliver et al. 2018) are of particular concern. Also, coupled with large-scale temperature change is the potential for more frequent and/or intense storm events under global climate change. In reporting on the effectiveness of protection, potential recovery from previous fishing pressures such as the impacts of trawling or potting on benthic habitats and species is another trend that is likely to be important to track. For some pressures potential indicators may be more apparent. For example, trawling is likely to have an impact on all structure forming species, and thus these may be expected to recover when this pressure is removed. However, growth rates are likely to differ for different species leading to different rates of recovery. Indicators for the impacts of warming may be more difficult to predict, but evidence from elsewhere in the world shows that temperate octocoral species and some sponges may be particularly susceptible to warming events, with mass mortalities linked to warming in the Mediterranean (Garrabou et al. 2009). However, impacts of warming events may be difficult to predict as different species are likely to have different tolerances to warming and different life history traits linked to different rates of recovery.

Tracking trends in the abundance of key species is at the core of an effective monitoring program (Noss 1990). Individual species are likely to respond to pressures in a more predictable manner based on their inherent biological traits. For example, growth rates or responses to temperature changes are likely to be more consistent for a species, introducing less noise when tracking trends through time than if multiple species are grouped. For marine imagery, identifying to the species level is often unachievable as identifying features may not be discernible from imagery alone. This is particularly the case for imagery scored from deeper waters, where there is likely to be species that are currently not described. For this reason, all biota in this project were scored to the "morphospecies" level, which is the finest taxonomic level achievable with imagery, whereby individual taxa are discerned through morphological characteristics. Morphospecies level scoring is nested within the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) classification scheme (Althaus et al. 2015). This allows for the potential to group morphospecies into lower resolution categories that may provide alternative indicators for ongoing monitoring. This project provides the first quantitative description of the distribution and abundance of these morphospecies within and between marine parks, information that is important for how they may be used as indicators.

Power analysis is a keystone to an effective monitoring program as it allows a determination of the level of sampling effort required to detect changes due to management actions or perturbations of interest. Such an assessment can help managers decide where to best direct resources, including the sampling effort necessary in terms of within site sampling, the number of sites and the temporal revisit plan. These various scenarios have a complex interplay, and simulation-based approaches are preferred for power analyses of monitoring programs as they allow different components of variance to be examined in isolation or combination along with different scenarios of possible change (e.g. Perkins et al. 2017, Perkins et al. 2018, Andersen et al. 2019). Information gained from earlier surveys about baseline rates of changes can also be incorporated into such simulations. Such analyses therefore allow the trade-offs between different sampling designs to be assessed and determine whether changes are likely to be detected for various indicators.

The vast amount of imagery collected by AUVs has been demonstrated to be capable of detecting ecologically important trends in benthic communities (e.g. Perkins et al. 2020a); however, methods are still being developed and the cost-benefits of the various means of allocating sampling effort through space and time still needs further assessment. Scoring of imagery is currently carried out by human annotators, with random points on an image being classified into different morphospecies to build up a percentage cover (an index of abundance) of each morphospecies across the surveyed area. This process is time-consuming and often a bottleneck in turning collected imagery into useable information. Typically, only a small percentage (approximately 5-10%) of imagery is scored for each site and survey period. Scoring of additional imagery provides more information, thereby increasing the statistical power to detect changes through time. It is important to understand the implications of additional scoring on the ability to detect change as this can aid in the direction of future efforts. Furthermore, alternative scoring approaches may provide a way to achieve higher statistical power to detect changes. For example, scoring either total counts or the presence or absence of a smaller subset of identified key morphospecies across all images may allow detection of changes with higher power and less overall scoring time than a point scoring approach.

This project aims were to:

(i) conduct the necessary scoring (annotation) of imagery required to examine changes through time

(ii) analyse the time-series of imagery, providing a description of the biota in each marine park and the magnitude of any changes that have occurred over the survey period, and

(iii) make recommendations for the ongoing monitoring of the benthic communities in the SE Network, including the selection of appropriate indicators and the likely sampling and survey effort required into the future to be able to detect biologically meaningful change.

Project outputs

Key project outputs are:

- A review of the knowledge gained to date about the extent of habitats and key flora and fauna within survey sites at each marine park
- An analysis of temporal changes for key species, communities and associated metrics across the survey time period within each marine park
- Power analysis of potential indicators for ongoing monitoring of each marine park and recommendations regarding the sampling intensity and survey frequency likely to be required to inform the Australian Marine Parks Monitoring, Evaluation, Reporting and Improvement (MERI) system
- Provision of public outreach material including imagery of key biota in each marine park and an article for the Australian Marine Parks Science Atlas

1 Methods 1.1 Overview

This project provides an overview of the time-series of surveys utilising the IMOS AUV facility in the SE Network undertaken to date, identifies important morphospecies and assemblages within each marine park and provides statistical analyses of the resultant time-series of data. While some historical annotation (i.e. scoring) of imagery existed, a significant amount of additional scoring was undertaken to ensure sufficient data was available to conduct analyses of changes through time. The project followed procedures outlined in the standard operating protocol (SOP) for monitoring with AUVs developed by the National Environment and Science Program (NESP) Marine Biodiversity Hub. This included the annotation of all imagery within the online Squidle+ platform which provides open access to all data collected during the project.

1.2 Mapping

Maps were produced using QGIS software to visualise the location of AUV deployments (transects) within each marine park through time. Where statistical analyses revealed significant trends in the cover of morphospecies, detailed maps were also produced showing changes in cover through time. Detailed site level maps were also produced for sites and morphospecies where targeted scoring (see below) was conducted.

1.3 Scoring

A single AUV deployment typically collects 5000 – 10000 images at a site. Many of these images will overlap, but even subsetting to non-overlapping images (e.g. every fifth image) typically results in 1000 – 2000 scorable images. Depending on the amount of hard substrate at a site, a subset of 100 images will typically result in less than 20% of potentially scorable images being annotated. To test the impact of the level of scoring on results three annotation approaches were compared: (1) initial baseline scoring; (2) additional scoring; (3) targeted scoring.

1.3.1 Initial baseline scoring

For initial baseline scoring of each site, it was decided that the focus should be on obtaining a minimum of 100 randomly selected images that contain reef across all transects at each location where repeat data is available. Images were selected randomly, and images that were completely soft sediment were skipped until the target of 100 images was reached. Any image that contained reef or biota associated with hard substrate was included. Each scored image was annotated with 25 random points in the online Squidle + annotation software. This decision was based on previous work (see Perkins et al. 2016) that suggested this level of scoring is likely to be the minimum required to quantify the less rare biota with reasonable precision.

1.3.2 Additional and targeted scoring

To test the impact of additional point scoring, single sites in Flinders, Freycinet and Huon Marine Parks were annotated with an additional 100 images with 25 random points for each survey year across the time-series, creating a total of 200 images for each year at these sites.

To test the impact of targeted scoring, for a subset of "key" morphospecies identified at two of these sites, detailed scoring across all non-overlapping images (i.e. subset to every fifth image) was undertaken. Upon discussion with Parks Australia, it was decided that the sites for additional scoring and targeted scoring were:

- Flinders Marine Park: Western Boundary site due to high diversity and potential change
 noted in condition of cup sponges and the observed decline in the bramble coral (likely to be *Asperaxis kareni*) over the time series. Detailed scoring involved the count of all red cup
 sponges and the tagging of cup sponges that exhibit > 50% bleaching, and the counting of all
 bramble coral colonies within images.
- Freycinet Marine Park: Joe's Reef site due to high diversity and previous research conducted at this site. Target species for detailed scoring are large black octocorals and massive purple sponges.
- Huon Marine Park: Huon site 2 to provide a southern example site that is shallower and contains a mixture of invertebrate and algal species. Only point scoring of an additional 100 images at each time point was conducted here.

The time taken to complete these tasks was also recorded so that a cost-benefit analysis could be conducted and the various trade-offs with the different approaches compared.

1.4 Data analysis 1.4.1 Description of sites and biological communities present

A combination of examination of the raw percent cover data and multivariate analysis was used to provide a general quantitative description of the habitats and flora and fauna within each marine park site, identification of key dominant morphospecies, and any morphospecies that are likely to be of high conservation value. Natural values definition used by Parks Australia are used to describe the habitats, where "twilight reefs" refer to reefs on the continental slope where light penetration is greatly reduced (between 30 and 70 m), and "dark shelf reefs" refer to reefs below the mesophotic zone (typically 70 - 200m).

As a general description, details of the top 30 morphospecies scored at each site are provided, along with species accumulation curves for each site. "Biological matrix" categories (e.g. bryozoa/cnidaria/sponge matrix) were excluded from this description as they were typically dominant and made it difficult to plot other morphospecies on the same scale. Instead the percent cover of biological matrix categories at each site are provided in the written description.

Species accumulation curves plot the number of species recorded against the number of images scored and were calculated across the entire time-series of point scoring data at each site. Therefore, at sites where additional point scoring was conducted, additional images were available to produce the curves. These curves show how well the level of scoring is capturing the biodiversity

(in terms of species richness) at each site. Ideally these curves should show an asymptote, with curves still climbing indicating further effort is required to adequately describe a site.

A multivariate analysis using PRIMER v6 software was conducted to allow the comparison of assemblages within and between marine parks over time. A multivariate multi-dimensional scaling (MDS) plot was produced to allow visualisation of how assemblages within sites through time grouped together in multivariate space. Similarity percentage (SIMPER) analysis was used to examine the characteristic morphospecies for each site and how they compare across sites.

1.4.2 Comparison of variability of individual morphospecies across the time series to date

To compare the variability observed in the cover of morphospecies seen to date a measure called population variability (*PV*) was used. *PV*, developed by Heath (2006) provides a method of examining variability in population abundance over time that allows comparisons among populations experiencing different dynamics. Alternate measures such as the coefficient of variation (CV = mean/standard deviation) measure departures from the mean abundance in the time series, thereby making the assumption of a normal (Gaussian) distribution in abundance over time. However, biological populations often undergo extreme fluctuations and rare events, in which case the mean will not reflect abundance in any given year. *PV* on the other hand doesn't make this assumption and has been demonstrated to be more robust to non-Gaussian behaviour and to also be more appropriate for quantifying variability in short time series (Heath 2006).

PV is calculated by considering all pair-wise comparisons, *C*, between sampling events in a time series:

$$C = \frac{n(n-1)!}{2}$$

Then, for each pairwise comparison in time steps z_i and z_j the difference function D(z) is calculated:

$$D(z) = 0 \text{ if } z_i = z_j$$
$$D(z) = 1 - \frac{\min(z_i, z_j)}{\max(z_i, z_i)}$$

In this way the abundances at every time step are compared, yielding a distribution of proportional differences D(z). Finally, the average is taken over the time series to yield PV:

$$PV = \frac{\sum_{z} D(z)}{C}$$

PV values are between zero, indicating complete stability and approach 1 as differences in population sizes through time approach infinity. As *PV* uses proportions, the values are independent of the mean (i.e. average abundance/cover) and allow comparison of variability across morphospecies with different covers.

PV was calculated for a subset of morphospecies within each marine park. Model-based estimates of cover (see section below) were used rather than estimates from the raw data as these estimates take into account sampling across depth and in space (i.e. spatial correlation) which is particularly

important where sampling covered different spatial extents (e.g. in Huon Marine Park). One thousand joint posterior sample draws for the fixed effects of the intercept (mean), year and depth coefficient estimates were taken from the model outputs, and the average cover calculated for each year sampled was then used for the *z* values for calculating *PV*. Posterior samples from a Bayesian model (see below) allow the exploration of the range of possible estimated coefficient values.

1.4.3 Analysis of temporal trends for dominant morphospecies Multivariate analysis of trend

To test for any significant overall changes in assemblages within marine parks over the survey period, a permutational multivariate analysis of variance (PERMANOVA) test in PRIMER v6 software was conducted. For this analysis, factors of "year" and marine park (AMP) were considered. PERMANOVA was used to compare the groupings of AMP and year to test whether the centroids for each year/AMP combination are equivalent. Significance was determined at the p = 0.05 level.

Model-based estimates of trend

Prior work has highlighted that most species scored in AUV imagery are rare (i.e. not recorded very often). Tracking trends in the cover of morphospecies that are rare is problematic as considerable noise is introduced in quantifying the cover within any given survey period. Previous research has suggested that morphospecies with > 0.5% cover are likely to provide higher power for detecting meaningful biological changes (e.g. Perkins et al. 2016, Monk et al. 2018). Therefore, for this project analysis of temporal trends in individual morphospecies was focussed on more dominant morphospecies, with site-level cover of at least 0.5% for at least one year during the survey period. This resulted in a short list of 37 morphospecies (Table 2.4.1). For analysis, all soft bryozoans were merged as preliminary analysis highlighted similar site level trends and there was sometimes difficulty in identifying different colour morphs due to lighting.

Table 1.4.1 List of 37 morphospecies for which analysis of temporal trends within each marine park were conducted. All species included had at least 0.5% cover within a site in a survey period. Bryozoa soft were merged for analysis. Details of the marine parks and number of sites where the morphospecies was found to be present are provided. Example images of each morphospecies is provided in section 3.4.

Morphospecies	Marine Parks where present (number of sites present)
Arborescent Grey Sponge	Huon (2), Freycinet (1), Flinders (4)
Arborescent Orange Sponge	Huon (2), Freycinet (1), Flinders (5)
Arborescent Orange Thin Sponge	Huon (2), Freycinet (1), Flinders (5)
Ascidian Colonial Purple	Freycinet (1)
Bramble Coral	Freycinet (1), Flinders (5)
Branching Gray Fine Repent Like	Huon (2), Freycinet (1), Flinders (3)
Bryozoa Soft (all morphospecies merged)	Huon (2), Freycinet (2), Flinders (5), Beagle (1)
Bryozoa Stumpy Hard	Freycinet (1), Flinders (4)
Calcareous Encrusting Red Algae	Huon (2)
Coral Orange Solitary (Caryophyllia like)	Freycinet (1), Flinders (4)
Cup Red Smooth	Huon (2), Freycinet (1), Flinders (4)
Cup Yellow	Huon (2), Freycinet (1), Flinders (5)
Encrusting Beige Oscula	Huon (2), Freycinet (2), Flinders (5), Beagle (1)
Encrusting Beige Smooth	Huon (2), Freycinet (2), Flinders (5), Beagle (1)
Encrusting Black	Huon (2), Freycinet (2), Flinders (5)
Encrusting Blue	Huon (2), Freycinet (2), Flinders (3)
Encrusting Light Orange	Huon (2), Freycinet (1), Flinders (5)
Encrusting Orange	Huon (2), Freycinet (2), Flinders (5)
Encrusting Purple Lumpy	Huon (1), Freycinet (1), Flinders (4), Beagle (1)
Encrusting White	Huon (2), Freycinet (2), Flinders (5), Beagle (1)
Encrusting Yellow Smooth	Huon (2), Freycinet (2), Flinders (5)
Epizoanthus sp.	Huon (2), Freycinet (1), Flinders (1)
Fan Pink	Huon (2), Freycinet (1), Flinders (5), Beagle (1)
Gorgonian Red	Huon (2), Freycinet (1), Flinders (4)
Hydroid White	Huon (1), Freycinet (2), Flinders (4), Beagle (1)

Lumpy White	Huon (2), Freycinet (1), Flinders (4), Beagle (1)
Massive Blue Shapeless	Huon (2), Freycinet (1), Flinders (4)
Massive Purple	Huon (2), Freycinet (1), Flinders (3), Beagle (1)
Non-Calcareous Encrusting Red Algae	Huon (2)
Palmate Grey	Huon (2), Freycinet (1), Flinders (4)
Purple Massive	Huon (1), Freycinet (1), Flinders (3)
Repent Orange	Huon (2), Freycinet (1), Flinders (5)
Repent Yellow	Huon (2), Freycinet (2), Flinders (5), Beagle (1)
Simple Beige Lumpy	Huon (2), Freycinet (1), Flinders (3), Beagle (1)
Simple Beige Lumpy Shapeless	Huon (1), Freycinet (1), Flinders (5), Beagle (1)
Unstalked Crinoids	Huon (1), Freycinet (1), Flinders (1), Beagle (1)

Previous research has shown that statistical modelling of AUV imagery needs to account for the fact that data collected as images from repeat transects across time and space are unlikely to be independent (Perkins et al. 2018, Perkins et al. 2020a). Therefore, models that can account for the spatial and temporal correlation when assessing changes across time should ideally be used, otherwise conclusions drawn and confidence in those conclusions may be erroneous.

The approach taken here follows that outlined in Perkins et al. (2020a), with an adaption to binomial data. The models use each image collected in time and space as the basis for analysis, while accounting for the correlation in space and time between images. For these analyses all point scoring data was used, that is the initial baseline point scoring as well as the additional point scoring where it was conducted (but excluded the targeted scoring).

To assess temporal changes in the 37 morphospecies temporal change was assessed through two model specifications: (i) Linear trends across the entire SE Network (i.e. all marine parks), treating each marine park as a random factor in the model; and (ii) Linear trends within each marine park, treating sites within the park as a random factor. By treating marine parks and sites as random factors, the variation between marine parks and sites is accounted for while allowing the estimation of the overall trend. Depth was included as a covariate in all models as it is known to be an important driver for many marine species. All models assumed a binomial distribution for the data, that is, images represent a set of Bernoulli trials (the number of points) where successes are denoted by points falling on the morphospecies of interest. Therefore, results are on the log-odds scale, with coefficients estimating changes in the log-odds of presence. To estimate the magnitude of an effect the formula $(\exp(\beta_i) - 1) * 100$ can be used to calculate the percentage change in odds-ratio for the *i*th covariate.

The model output includes an estimate for the "year" effect with the sign (positive or negative) of the mean estimate indicating the direction of the estimated trend. Similarly, an estimate of the depth coefficient is provided. Note that the year trend estimated is a linear trend over the survey period. Non-linear trends, such as a low initial cover, a large increase in the middle time period and then low cover in the last survey (or vice-versa) may result in an overall non-significant linear trend.

Non-linear trends can be modelled but require more than the three time points that are currently available.

The model is Bayesian, which requires specification of prior distributions for each parameter. The same priors used in Perkins et al. (2020a) were used. The output of a Bayesian model provides posterior distributions for each parameter based on the prior distribution conditioned by the empirical data. Strong evidence of a trend is only given to parameter estimates that do not include zero in the estimated 95% credible interval of the posterior distribution. The further a distribution is away from zero (either positive or negative), the stronger the evidence for a trend. Posterior estimates are given for the fixed effects of the intercept (the overall mean), the linear year effect and the depth effect. To highlight where strong evidence for a positive or negative trend exists, those estimates are highlighted in red for a negative linear trend and green for a positive linear trend. Where the year effect is not highlighted there is no evidence for an overall or marine park trend in the data collected to date.

1.4.4 Power analysis

Power analysis is important for monitoring programs to ensure that sampling designs provide sufficient information to detect changes when they happen. For monitoring programs such as the AUV monitoring program the sampling design includes choices around: (1) within image sampling effort (the number of points used or the alternative scoring approach), (2) within site sampling effort (how many images scored), (3) the number of sites, and (4) the revisit plan to sites through time. The baseline or background variability of the abundance of an indicator will add further noise to the trend that the monitoring program is aiming to detect. Additionally, biologically meaningful trends are often uncertain without the knowledge of the natural cycles that an indicators abundance goes through. There is therefore a complex interplay between many factors that will affect the power to detect change, and it is impossible to test the interplay between all different combinations of these factors.

The power analyses conducted in this report are aimed to illustrate several plausible scenarios of change, and to test the ability of realistic sampling efforts to detect these changes. A simulation approach is taken, where information gathered from the scored data is used as the basis to project forward trends in the abundance of some example morphospecies. Sampling designs are then simulated to mimic potential sampling efforts and the resultant data is analysed in the same way as is done with the empirical data. When many simulations are run (e.g. 1000) then the proportion of simulations where the trend is detected can be used as a measure of statistical power. Typically, high statistical power is considered to be achieved at 80% with a significance (alpha) level of 0.05. That is, when the probability of making a type II error, in this case accepting that a null hypothesis of no change is true, is less than 20%. Therefore, in a simulation framework this equates to the proportion (ideally > 80%) of simulations where a simulated significant change is detected.

The scenarios tested were:

- 1. A 50% decline in cover from the last survey to the next survey, simulating for example removal following a storm event, for:
 - a. Arborescent Grey sponges
 - b. Arborescent Orange sponges
 - c. The cover of all structure forming morphospecies including erect sponges, cup sponges and corals

- 2. A 75% decline over 30 years, simulating a gradual chronic decline within Flinders Marine Park for:
 - a. Red Cup Smooth sponges
 - b. Bramble Corals
- 3. Testing of between a 50% and 5% (in 5% increments) decline in cover of all structure forming species within Flinders Marine Park for all structure forming morphospecies in order to test what level of change could be detected with 80% power

For scenario 1, power was tested using both 100 and 200 images each year. Model-based estimates of cover from the final year of survey at each site were used as the basis for simulation. A random selection of images was selected along the transect line at each site representing a subsequent survey. Prediction of the probability of presence was then made using the spatial model at each randomly selected image location. The probability of presence was then adjusted by 50% to represent the new probability under a scenario of decline. 25 random binomial draws were then taken using this adjusted probability of presence, representing the use of 25 random points and thus simulating the binomial variability of point sampling. Models were then refit using the last survey and the simulated following survey, including a year effect. For each simulation it was tested whether the change was detected. A total of 100 simulations was used, and the proportion of times that a significant effect was detected was used as a measure of power. Models were fit for each site and also a marine-park-level model where data from all sites within each marine park was used to test whether a trend could be detected across all sites.

For scenario 2 an estimate of the temporal variability seen in the time series to date was incorporated into the simulation. Non-spatial generalised linear mixed models were used to do this. This was done as a larger number of simulations was required which would have made the computational demands of using the spatial models unfeasible. An estimate of temporal variance was made by modelling the time series of data at each site within Flinders Marine Park and setting year as a random effect. This makes the assumption that all variability seen to date is "baseline" and could be expected to be seen into the future. Once again, the last survey year at each site was used as a starting point. A random draw of the temporal variance was taken with a mean zero and standard deviation equal to the square root of the temporal variance. This was added (or subtracted) from the binomial probability, which was then adjusted by the simulated change. The simulated change was a linear 75% decline over 30 years, which equates to approximately 2.6% per year, with a 50% decline reached at year 20. 100 images with 25 points were simulated in each year. Using Flinders Marine Park allowed the model to be fit for each site and across all sites. Also, the power to detect the change was tested through time with a revisit schedule of every year, every 3 years and every 5 years. Models were fit at each simulated time-step, and whether a linear trend in time was detected was tested at each time, with the proportion of simulations at each time where an effect was found quantifying power. This time 1000 simulations were used as the non-spatial model made this feasible.

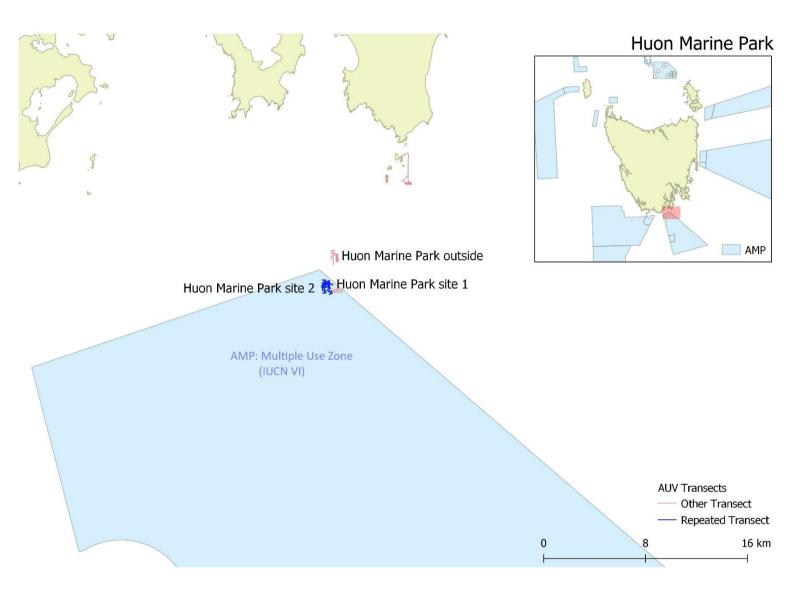
For scenario 3 200 images were used at each site within Flinders Marine Park. Model-based estimates of cover from the final year of survey at each site were used as the basis for simulation. A random selection of images was selected along the transect line at each site representing a subsequent survey. Prediction of the probability of presence was then made using the spatial model at each randomly selected image location. The probability of presence was then adjusted under a number of scenarios between 50% and 5% in 5% increments to represent the new probability under differing scenarios of decline. 25 random binomial draws were then taken using this adjusted probability of presence, representing the use of 25 random points and thus simulating the binomial

variability of point sampling. Models were then refit using the last survey and the simulated following survey, including a year effect. For each simulation it was tested whether the change was detected. A total of 100 simulations was used, and the proportion of times that a significant effect was detected was used as a measure of power. Models were fit for each site and also a marine-park-level model where data from all sites within Flinders Marine Park was used to test whether a trend could be detected across all sites for the given level of change.

1.4.5 Analysis of targeted scoring data

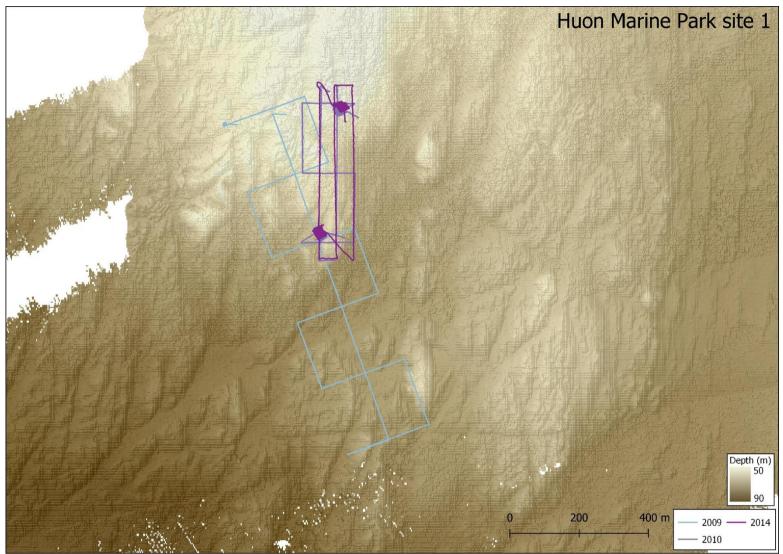
For the targeted scoring data, a spatio-temporal model similar to that used for the point count data was employed. However, as the data from targeted scoring was count data (i.e. a counting of all individuals within each image), a Poisson regression was used rather than a binomial regression. Once again, a significant linear trend in abundance over the survey period was assessed through the posterior distribution of the fixed "year" effect.

1.4.6 Comparison of scoring approaches


At each of the targeted scoring sites data collected through a point count approach with 200 images, and a total count of all individuals allowed for a comparison of different scoring approaches. To compare these different approaches in terms of sampling effort, the targeted scoring data was reduced to the same number of images (i.e. 200 images). Where possible, the exact same images were used. However, as the targeted scoring images were a subset of every fifth image, and the point scoring images were a random selection, a perfect match could not always be made. In these instances the nearest image was used instead.

To compare the different approaches a simulation-based power analysis was again conducted. For each of the 2 morphospecies at each of the targeted scoring sites a 50% decline in cover was simulated as described above. 100 simulations were used to assess the power to detect the decline in cover. As the time taken to score using the different approaches was recorded, a comparison of what might be achieved in a comparable amount of time was also made.

2 Results

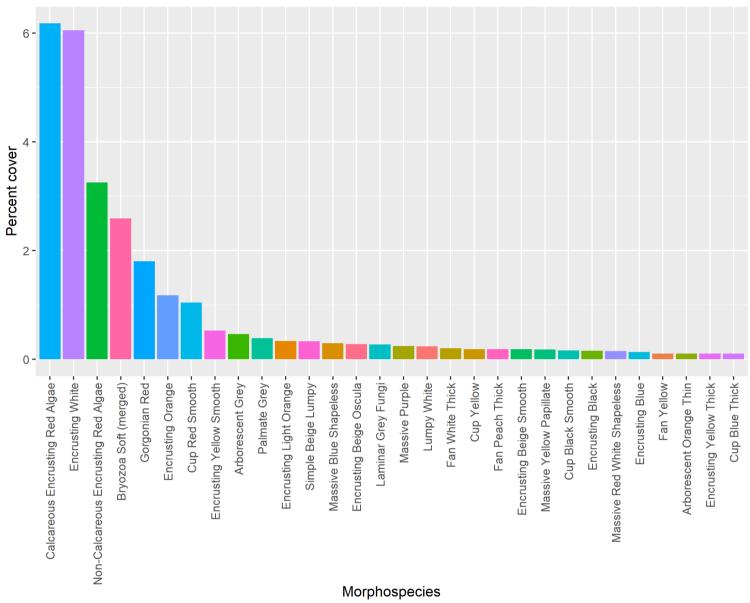

Results of analyses for each marine park are outlined below. First, maps of the AUV survey work conducted to date in each marine park are provided along with the scoring conducted during the project. A general description of each site is provided, including habitat and biological community descriptions and species accumulation curves. This is followed by multivariate analysis of community change through time and an analysis of the trends in dominant morphospecies within the time series within each marine park. Finally, the results of power analyses and the targeted scoring are presented.

2.1 Description of marine parks, sites, and biological communities present 2.1.1 Huon Marine Park

Figure 2.1.1 Overview map of Huon Marine Park. Details of non-repeated transects not included in this study are given in Appendix A.

2.1.1.1 Huon Marine Park site 1

Figure 2.1.2 Site level map of Huon Marine Park site 1.


Description of habitat

Huon Marine Park site 1 is a twilight rocky reef (45 -71 m) with sufficient light to support algal communities. It is dominated by medium to high profile rocky reef interspersed with smaller sand patches. Large rock outcrops > 2m in height are present along with complex boulder habitat. The initial survey (2009) extends to greater depths (approximately 80 m), while subsequent surveys are focussed on the shallower portion of the site (45 - 60 m).

Description of biological community

This site is relatively shallow (45 – 70 m) and thus much of the reef receives sufficient light to support algal communities. Both calcareous and non-calcareous encrusting red alga form dominant components of the ecosystem along with soft bryozoans, small red gorgonian fans, colonial anemones and a wide variety of sponge morphospecies (Figure 3.1.3). Encrusting white sponge was very common throughout the survey period and was often seen as small flecks among the biological matrix. The physical height of many of the morphospecies was low compared to that seen in other marine parks. The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 57% over the time-series of data collected at this site. Example images from Huon Marine Park site 1 are contained in Appendix B.

Multivariate SIMPER analysis revealed that characteristic morphospecies for Huon Marine Park site 1 included encrusting algae, encrusting white sponge, red gorgonian, cup red smooth, palmate grey, laminar grey fungi and fan peach thick sponges.

Huon Marine Park site 1: 30 most common morphospecies

Figure 2.1.3 Top 30 morphospecies scored at Huon Marine Park Site 1. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve

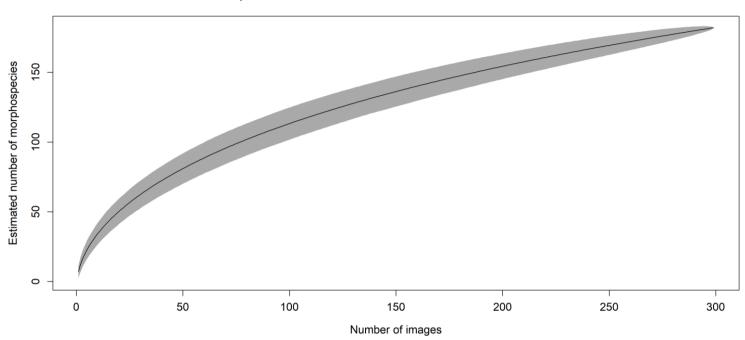


Figure 2.1.4 Species accumulation curve for Huon Marine Park site 1.

The species accumulation curve (Figure 3.1.4) reveals that the 300 images scored across time have captured a significant proportion of the species richness at this site. However, the curve is still climbing suggesting that there may be more than 200 morphospecies in total at this site.

2.1.1.2 Huon Marine Park site 2

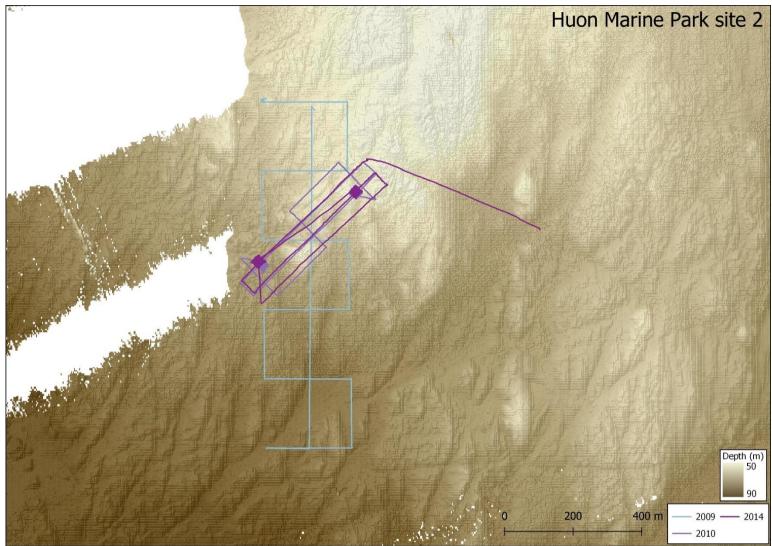
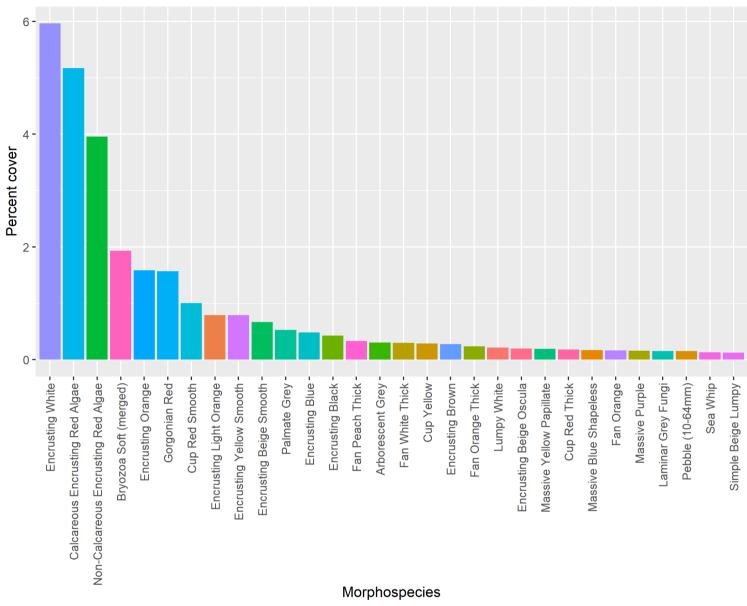


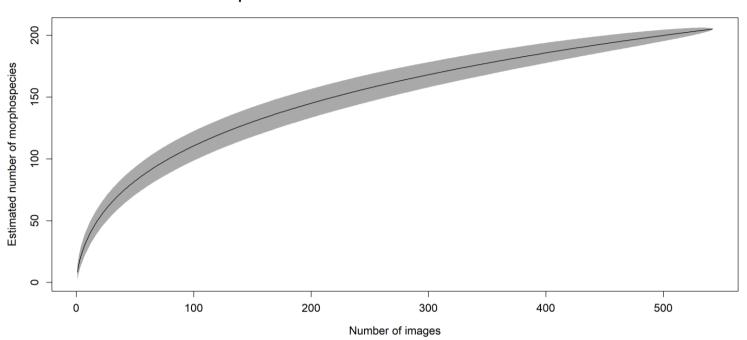
Figure 2.1.5 Site level map of Huon Marine Park site 2.


Description of habitat

Huon Marine Park site 2 is a twilight rocky reef (47 - 72 m) with sufficient light to support algal communities. Habitat is similar to site 1, and is also dominated by medium to high profile rocky reef interspersed with smaller sand patches. Large rock outcrops > 2m in height are present along with complex boulder habitat. The initial survey (2009) extends to greater depths (approximately 80 m), while subsequent surveys are focussed on the shallower portion of the site (45 - 60 m).

Description of biological community

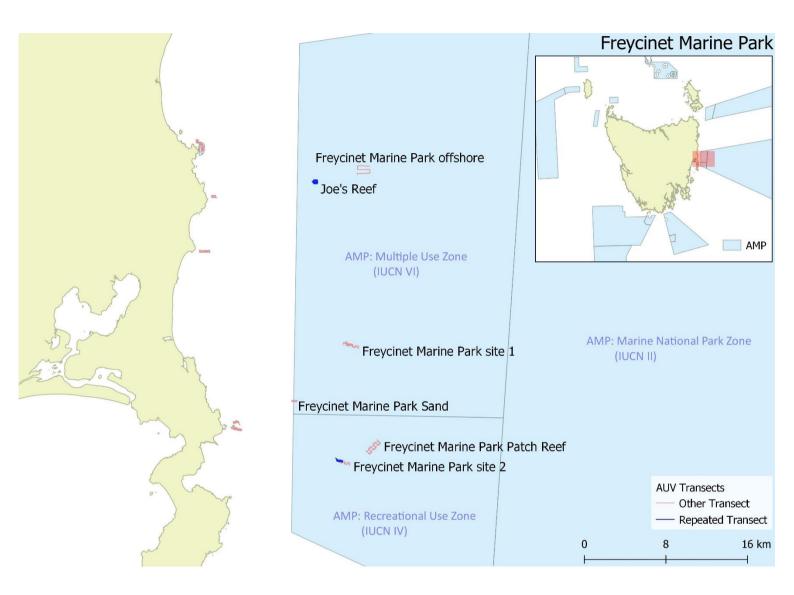
The biological community at Huon Marine Park site 2 is similar to that found at site 1. This site is also relatively shallow (45 – 70 m) and contains significant cover of encrusting algal species. Both calcareous and non-calcareous encrusting red alga form dominant components of the ecosystem along with soft bryozoans, small red gorgonian fans, and a wide variety of sponge morphospecies (Figure 3.1.6). Encrusting white sponge was very common throughout the survey period, and had higher overall cover compared to site 1. The physical height of many of the morphospecies was low compared to that seen in other marine parks. The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 53% over the time-series of data collected at this site. Example images from Huon Marine Park site 2 are contained in Appendix B.


Multivariate SIMPER analysis revealed that characteristic morphospecies for Huon Marine Park site 2 were the same as for site 1, and included encrusting algae, encrusting white sponge, red gorgonian, cup red smooth, palmate grey, laminar grey fungi and fan peach thick sponges.

Huon Marine Park site 2: 30 most common morphospecies

Figure 2.1.6 Top 30 morphospecies scored at Huon Marine Park Site 2. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve



Species accumulation curve Huon Marine Park site 2

Figure 2.1.7 Species accumulation curve for Huon Marine Park site 2.

The species accumulation curve reveals that the 600 images scored across time have captured a significant proportion of the species richness at this site, with the curve beginning to asymptote and a total of around 200 morphospecies being observed (Figure 3.1.7). Given the similar species composition to site 1, it appears 700-800 images may capture most morphospecies within Huon Marine Park.

2.1.2 Freycinet Marine Park

Figure 2.1.8 Overview map of Freycinet Marine Park. Details of non-repeated transects not included in this study are given in Appendix A.

2.1.2.1 Joe's Reef

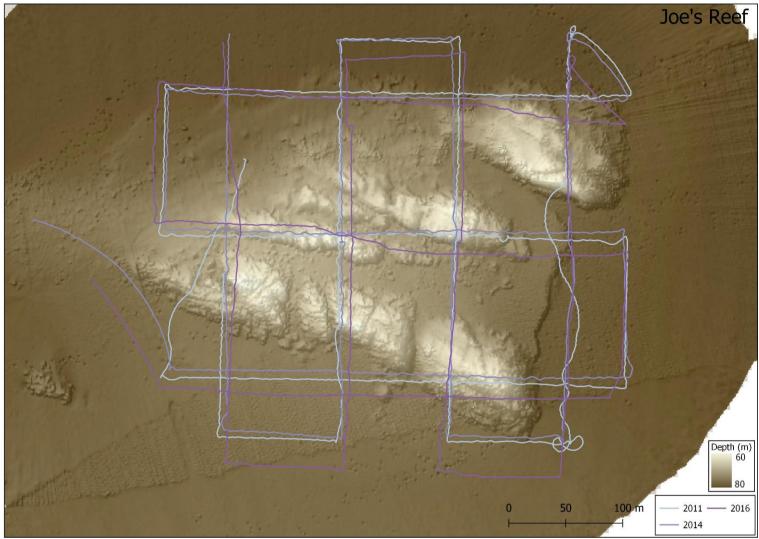
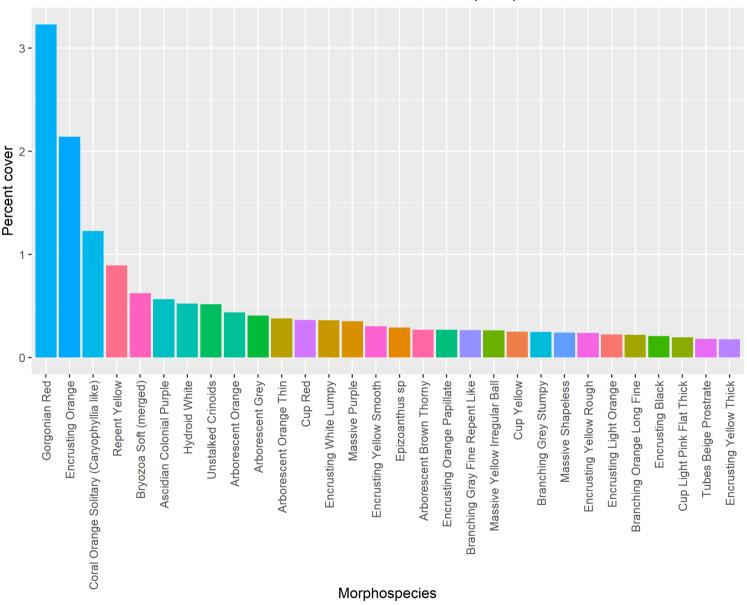


Figure 2.1.9 Site level map of Joe's Reef.

Description of habitat

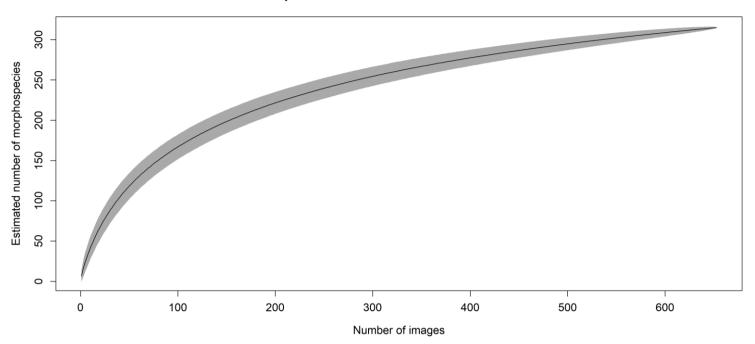
Joe's Reef is a high relief granite reef surrounded by sandy substrate lying approximately 10 km offshore. It is twilight-dark shelf reef (59-83 m), lying in depths at the limits of the photic zone, so little to no algal species are present. Several distinct outcrops rising almost 20 metres from the surrounding seafloor are interspersed with lower relief areas that contain sandy substrate and mixed habitats with boulders, cobbles and lower relief reef that is often covered with a veneer of sand.


Description of biological community

Joe's Reef contains a high diversity of invertebrate fauna including gorgonians, mushroom corals, hydroids and a large variety of sponges form predominant space occupiers (Figure 3.1.10). Many of the structure forming species are larger at this site, as the site is deeper and less likely to experience disturbance through storm events. The mean cover of the biological matrix

(bryozoa/cnidaria/sponge matrix) category at this site was an average of 32% over the time-series of data collected at this site.

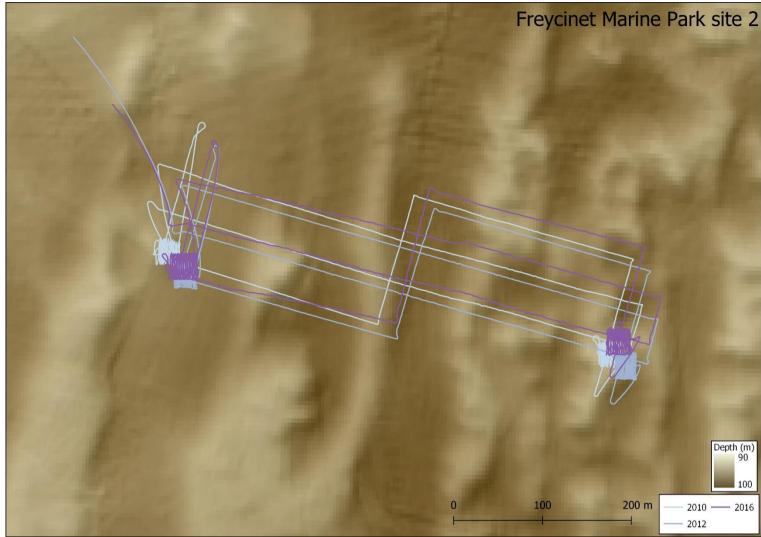
Large tree-like black corals are a rare but distinctive biological feature of this site. Black corals tend to be long-lived are of high conservation value at this site. Example images from Joe's Reef are contained in Appendix B.


Multivariate SIMPER analysis revealed that characteristic morphospecies for Joe's Reef included red gorgonians, coral orange solitary (Caryophyllia like), repent yellow sponges and encrusting orange sponges.

Joe's Reef: 30 most common morphospecies

Figure 2.1.10 Top 30 morphospecies scored at Joe's Reef. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve

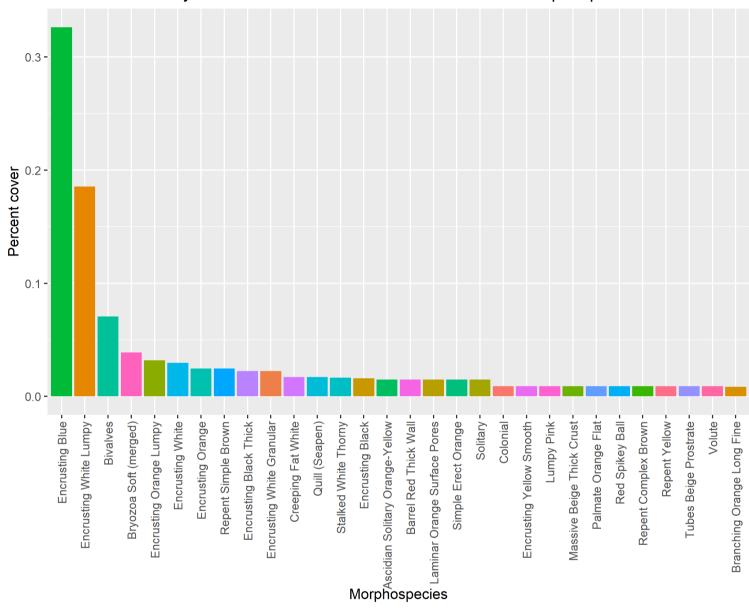


Species accumulation curve Joe's Reef

Figure 2.1.11 Species accumulation curve for Joe's Reef.

The species accumulation curve reveals that the 600-700 images scored across time have captured a significant proportion of the species richness at this site, with the curve beginning to asymptote and a total of in excess of 300 morphospecies being observed (Figure 3.1.11). This large number of morphospecies recorded at this site reveal it is of high conservation importance from a biodiversity perspective.

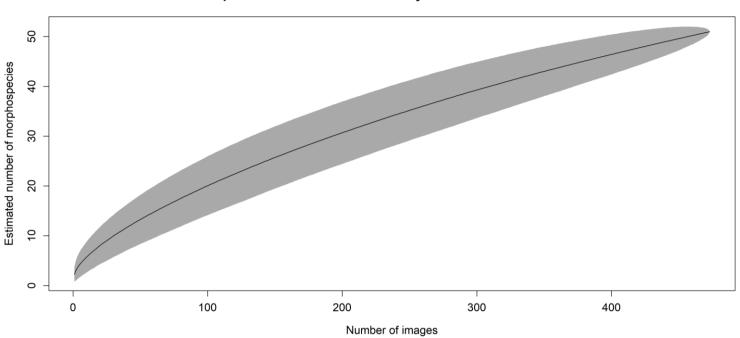
2.1.2.2 Freycinet Marine Park site 2


Figure 2.1.12 Site level map of Freycinet Marine Park site 2.

Description of habitat

Freycinet Marine Park site 2 is a dark shelf reef lying below the photic zone (93-100 m). It is a low relief sand dominated site with almost no hard substrate evident in the imagery collected to date. Sessile fauna evident in imagery are likely to be attached to shells or other small pieces of biogenic rubble or may be attached to hard substrate that is covered by a veneer of sand.

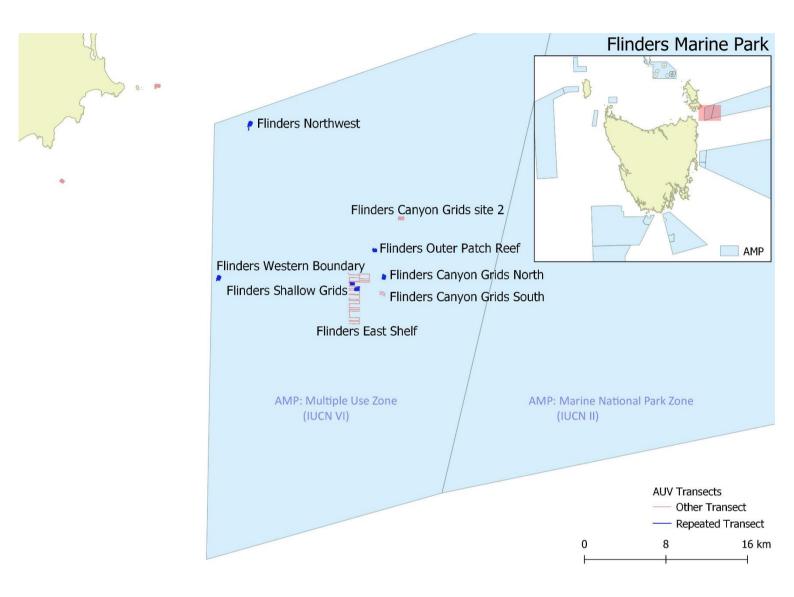
Description of biological community


There is low overall cover of individual morphospecies with the dominant fauna being encrusting sponges, bryozoans, ascidians and sea pens (Figure 3.1.13). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 20% over the time-series of data collected at this site. Example images from Freycinet Marine Park site 2 are contained in Appendix B.

Freycinet Marine Park site 2: 30 most common morphospecies

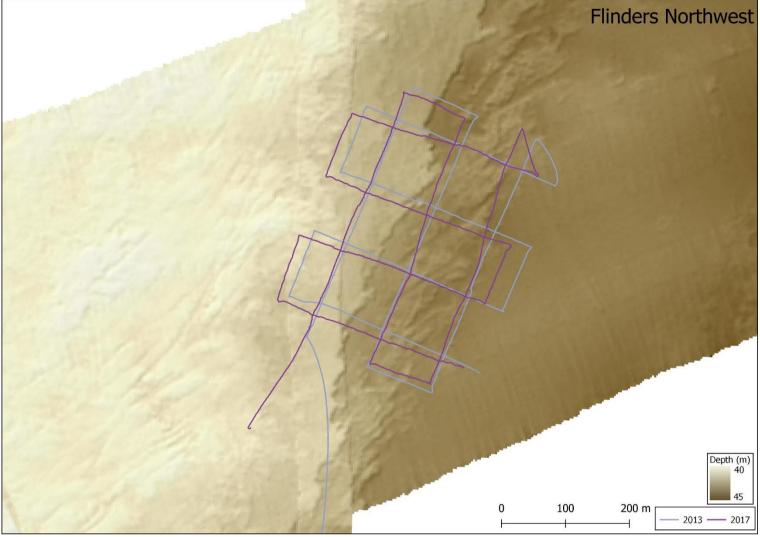
Figure 2.1.13 Top 30 morphospecies scored at Freycinet Marine Park Site 2. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve



Species accumulation curve Freycinet Marine Park site 2

Figure 2.1.14 Species accumulation curve for Freycinet Marine Park site 2.


The species accumulation curve reveals that the 400-500 images scored across time have captured a significant proportion of the species richness at this site (Figure 3.1.14). However, the curve is still climbing suggesting that there may be more than 80 morphospecies in total at this site. This site had the lowest number of recorded morphospecies across all the sites scored.

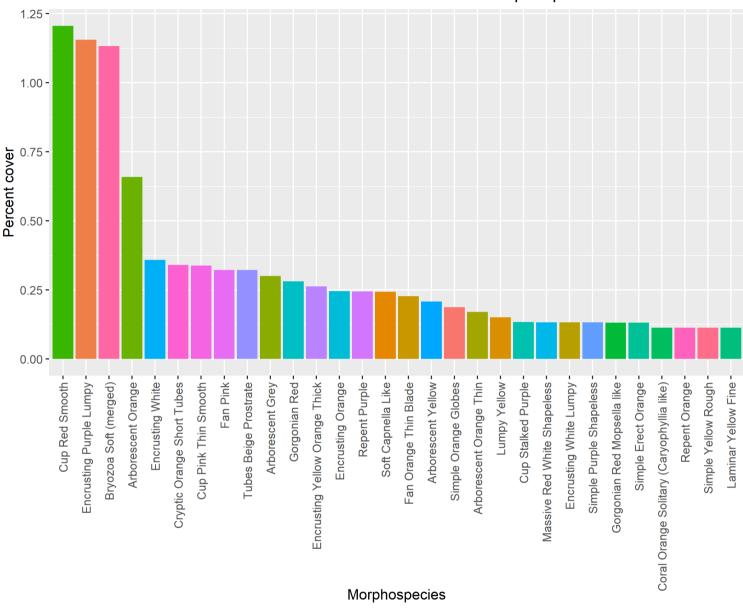
2.1.3 Flinders Marine Park

Figure 2.1.15 Overview map of Flinders Marine Park. Details of non-repeated transects not included in this study are given in Appendix A.

3.1.3.1 Flinders Northwest

Figure 2.1.16 Site level map of Flinders Northwest.

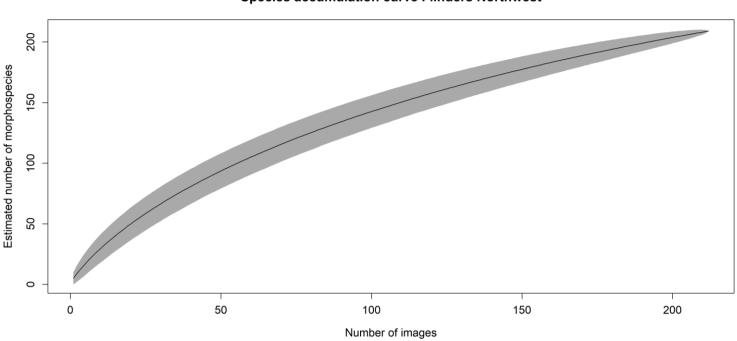
Description of habitat


Flinders Northwest is a mixed habitat twilight rocky reef (41-45 m) shelf site dominated by low relief (< 1m) rocky reef ledge features and sand habitats. Reef features are often covered in a veneer of sand, while sand substrate is often rippled. This indicates a dynamic environment that may be frequently subject to currents or storm events.

Description of biological community

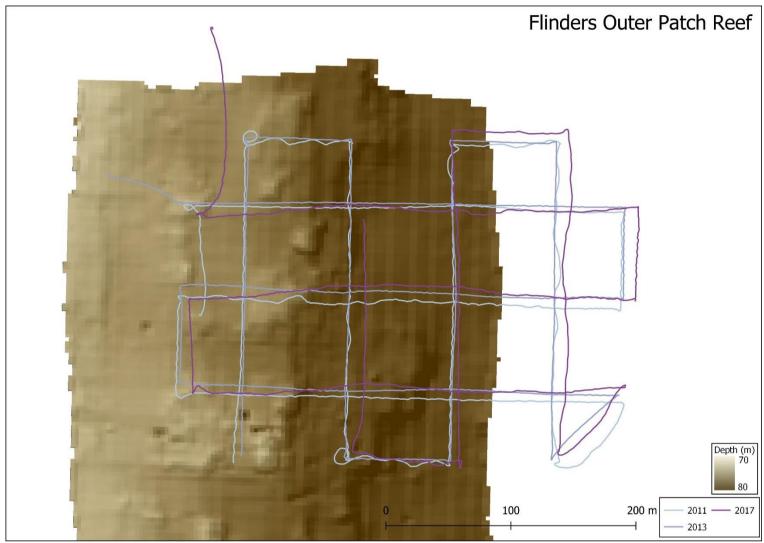
This is a very high diversity site, indicated by the high species richness seen in the species accumulation curve (Figure 18) and the low dominance of any single morphospecies. Many different sponge forms are present as well as a variety of cnidarians and hydroids (Figure 3.1.17). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 18% over the time-series of data collected at this site. Example images from Flinders Northwest are contained in Appendix B.

SIMPER analysis revealed that cup red smooth, encrusting purple lumpy, and soft bryozoa are characteristic species for this site.


This site contains large gorgonian fans (Mopsella sp. like) which are likely to be of high conservation value. Similarly to the black corals at Joe's reef, these gorgonians are low in overall cover. Soft corals (Capnella like) were also noted in low abundance at this site and may be of conservation value as this morphospecies was not observed at other sites in Flinders Marine Park or across the SE Network.s

Flinders Northwest: 30 most common morphospecies

Figure 2.1.17 Top 30 morphospecies scored at Flinders Northwest. Substrate categories, mobile species and biological matrix categories were excluded.

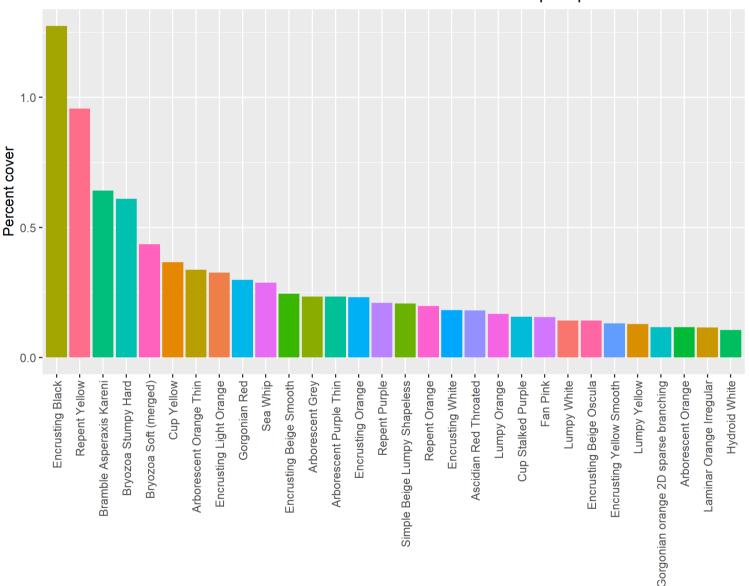

Species accumulation curve

Species accumulation curve Flinders Northwest

Figure 2.1.18 Species accumulation curve for Flinders Northwest.

The species accumulation curve reveals that the 200 images scored across time have not captured the species richness at this site, with the curve still climbing at 200 morphospecies (Figure 3.1.18). This large number of morphospecies recorded in only two years of survey work at this site reveal it is likely of high conservation importance from a biodiversity perspective.

Figure 2.1.19 Site level map of Flinders Outer Patch Reef.

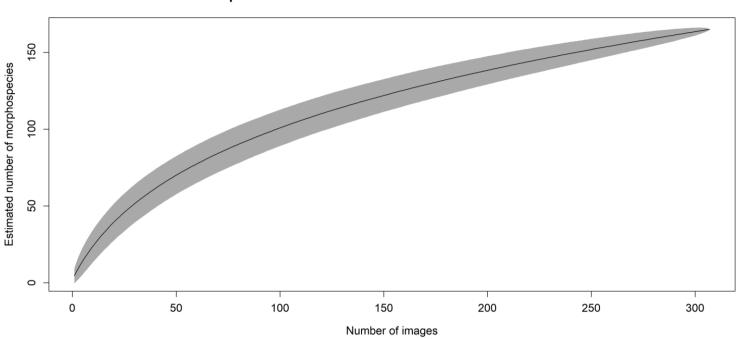

Description of habitat

Flinders Outer Patch Reef is a mixed habitat dark shelf reef (75 - 94 m) shelf site dominated by sand with rounded rocky outcropping features of low to medium relief (1 - 2 m). Reef features are often covered in a veneer of sand as are lower relief areas of hard substrate.

Description of biological community

This site is similar to other sites within Flinders that show high diversity invertebrate communities associated with rocky ledge features. These features have a range of cnidarian, bryozoan and sponge morphospecies (Figure 3.1.20). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 16% over the time-series of data collected at this site. Example images from Flinders Outer Patch Reef are contained in Appendix B.

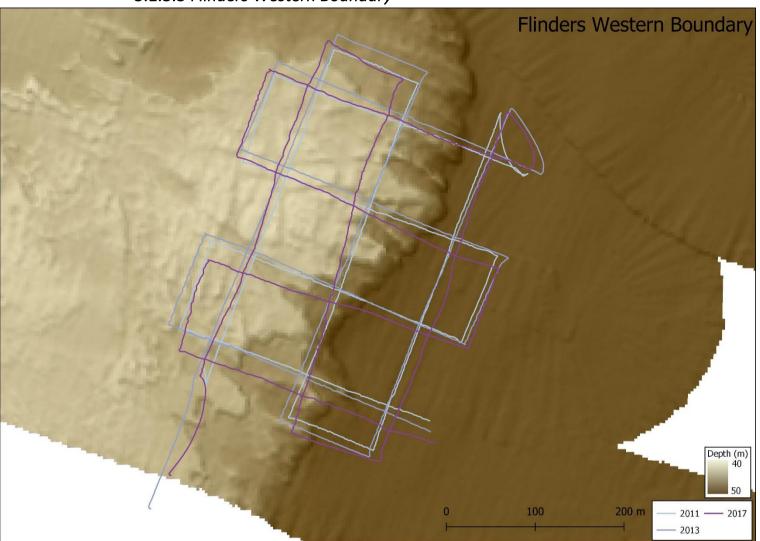
SIMPER analysis revealed that hard and soft bryozoans, repent yellow sponges, cup yellow sponges, bramble coral and sea whips are characteristic morphospecies for this site.



Flinders Outer Patch Reef: 30 most common morphospecies

Morphospecies

Figure 2.1.20 Top 30 morphospecies scored at Flinders Outer Patch Reef. Substrate categories, mobile species and biological matrix categories were excluded.


Species accumulation curve

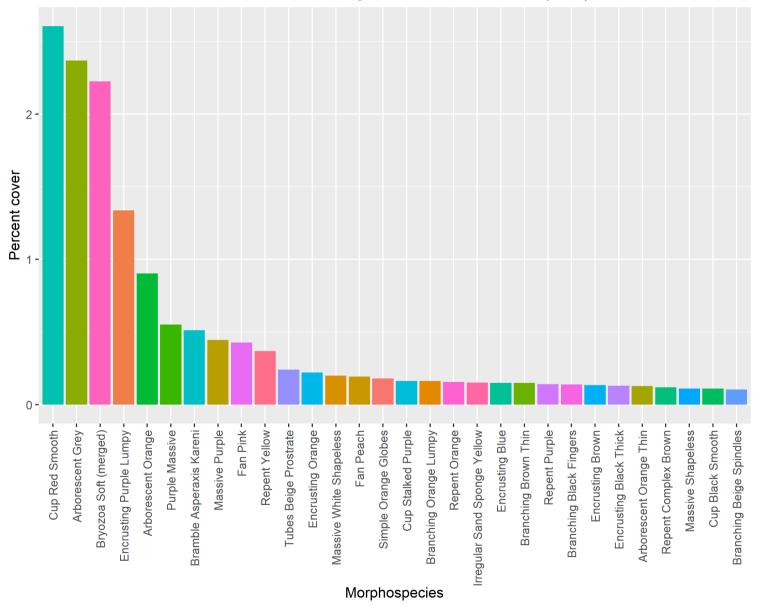
Species accumulation curve Flinders Outer Patch Reef

Figure 2.1.21 Species accumulation curve for Flinders Outer Patch Reef.

The species accumulation curve reveals that the 300 images scored across time have captured a significant proportion of the species richness at this site (Figure 3.1.21). However, the curve is still climbing suggesting that there may be more than 200 morphospecies in total at this site.

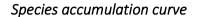
3.1.3.3 Flinders Western Boundary

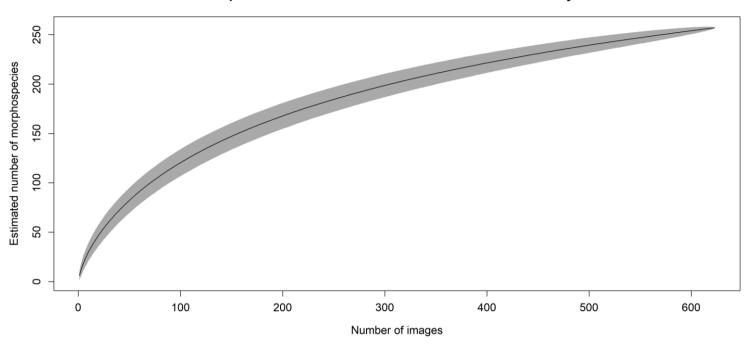
Figure 2.1.22 Site level map of Flinders Western Boundary.


Description of habitat

Flinders Western Boundary is a mixed habitat twilight rocky reef (43-52 m) shelf site dominated by low relief (< 1m) rocky reef features and sand habitats punctuated by edges where there are drop-offs of 1-2 m height. Soft substrate areas typically contain shell fragments and biogenic rubble. Reef ledges are often covered in a veneer of sand.

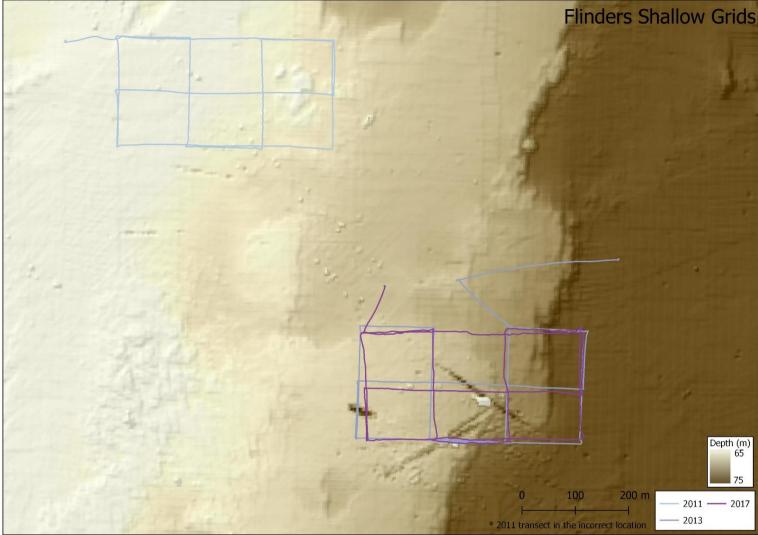
Description of biological community


This site also displays a high diversity in sessile invertebrates including bryozoans, cnidarians and sponges (Figure 3.1.23). A relatively high cover of cup sponges, especially the cup red smoooth morphospecies is a feature of this site. The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 37% over the time-series of data collected at this site. Example images from Flinders Western Boundary are contained in Appendix B.


SIMPER analysis revealed that a variety of sponges including cup red smooth, arborescent grey, encrusting purple lumpy, fan pink and tubes beige prostrate along with bramble coral are characteristic for this site.

Flinders Western Boundary: 30 most common morphospecies

Figure 2.1.23 Top 30 morphospecies scored at Flinders Western Boundary. Substrate categories, mobile species and biological matrix categories were excluded.



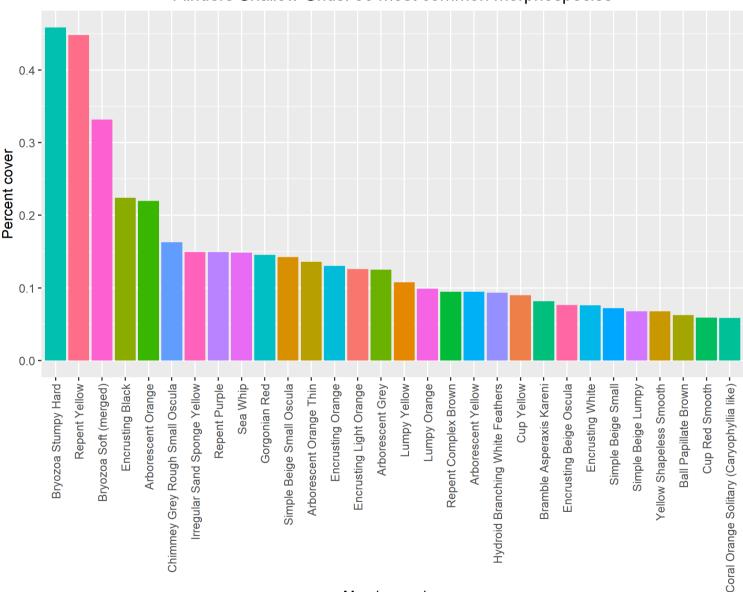
Species accumulation curve Flinders Western Boundary

The species accumulation curve reveals that the 600-700 images scored across time have captured a significant proportion of the species richness at this site, with the curve beginning to asymptote and a total of in excess of 250 morphospecies being observed (Figure 3.1.24). This large number of morphospecies recorded at this site reveal it is of high conservation importance from a biodiversity perspective.

Figure 2.1.24 Species accumulation curve for Flinders Western Boundary.

3.1.3.4 Flinders Shallow Grids

Figure 2.1.25 Site level map of Flinders Shallow Grids.


Description of habitat

The Flinders Shallow Grids site is a mixed habitat twilight-dark shelf reef (62 – 78 m) dominated by sand habitats punctuated by rocky reef edges where there are drop-offs of 1-2 m height and hard substrate is exposed. Rock substrate areas around the edges are typically covred in a sand veneer. Note that an AUV transect was deployed in an incorrect location in 2011.

Description of biological community

The Flinders Shallow Grids site is sand dominated with sessile invertebrates restricted to smaller areas of hard substrate. Hard and soft bryozoans, sea whips, gorgonians and a variety of sponge morphospecies predominate (Figure 3.1.26). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 9% over the time-series of data collected at this site. Example images from Flinders Shallow Grids are contained in Appendix B.

SIMPER analysis revealed that soft and hard bryozoa, repent yellow sponges, sea whips and irregular sand sponge yellow were characteristic morphospecies at this site.

Flinders Shallow Grids: 30 most common morphospecies

Morphospecies

Figure 2.1.26 Top 30 morphospecies scored at Flinders Shallow Grids. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve

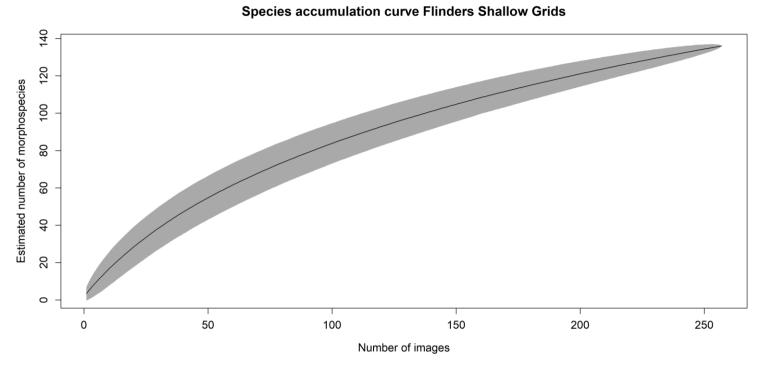
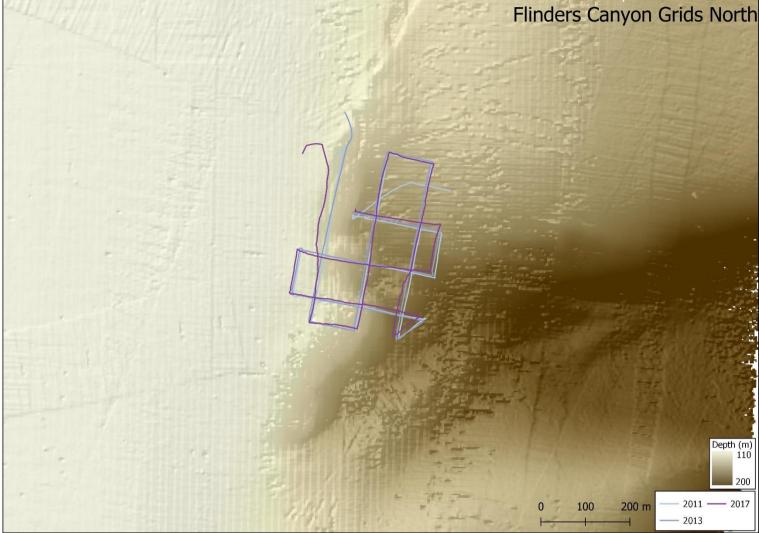



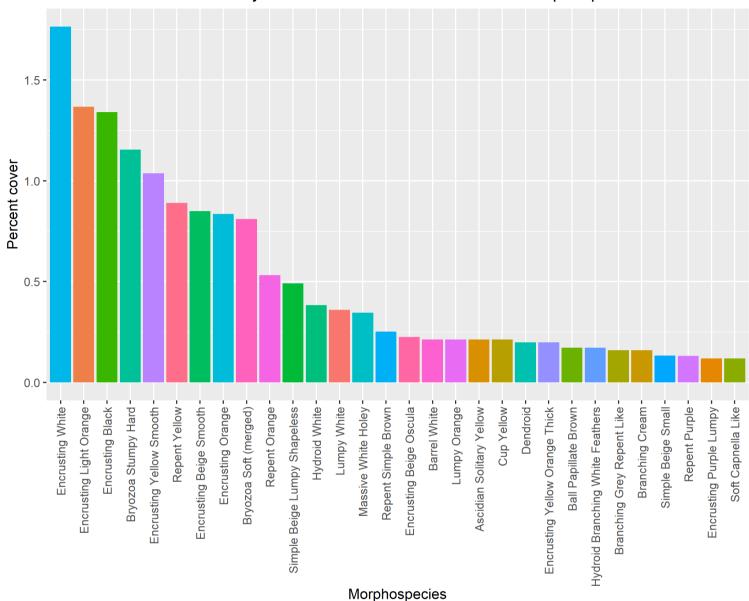
Figure 2.1.27 Species accumulation curve for Flinders Shallow Grids.

The species accumulation curve reveals that the 300 images scored across time have not yet captured all the species richness at this site with the curve still not reaching an asymptote at 140 morphospecies (Figure 3.1.27).

3.1.3.5 Flinders Canyon Grids North

Figure 2.1.28 Site level map of Flinders Canyon Grids North.

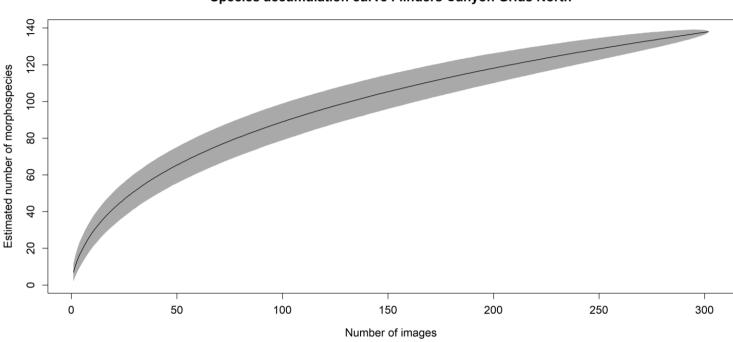
Description of habitat


The Flinders Canyon Grids North site is a mixed habitat deeper dark shelf (112 - 181 m) site with soft substrate habitats punctuated by steep drop-off areas. Drop-off aeas often have exposed hard substrate. Areas with large boulders and exposed rocky outcrops are also present and contain higher diversity of invertebrate fauna. Soft substrate often contains biogenic rubble such as dead pieces of hard bryozoan colonies.

Description of biological community

This is a deep canyon-head site (112- 181 m) and thus is dominated by sessile invertebrates with no algal species. Encrusting sponges are dominant features as well as a variety of hard and soft bryozoans, soft corals and octocorals (Figure 3.1.29). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 30% over the time-series of data collected at this site. Example images from Flinders Canyon Grids North are contained in Appendix B.

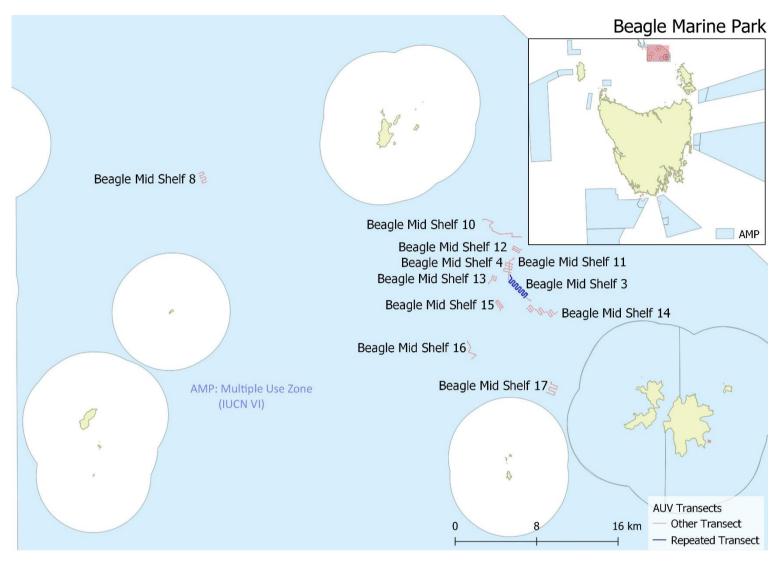
SIMPER analysis revealed that hard bryozoa, encrusting white, light orange and yellow smooth sponges, repent yellow and orange sponges and massive white holey sponges were characteristic at this site.


Soft corals (Capnella like) were noted on the upper canyon slopes and may be of high conservation value as the morphospecies observed here was not observed at other sites in Flinders Marine Park.

Flinders Canyon Grids North: 30 most common morphospecies

Figure 2.1.29 Top 30 morphospecies scored at Flinders Canon Grids North. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve



Species accumulation curve Flinders Canyon Grids North

Figure 2.1.30 Species accumulation curve for Flinders Canyon Grids North.

The species accumulation curve reveals that the 300 images scored across time have captured a significant proportion of the species richness at this site (Figure 3.1.30). However, the curve is still climbing suggesting that there may be up to 200 morphospecies in total at this site.

2.1.4 Beagle Marine Park

Figure 2.1.31 Overview map of Beagle Marine Park. Details of non-repeated transects not included in this study are given in Appendix A.

3.1.4.1 Beagle Mid Shelf 3

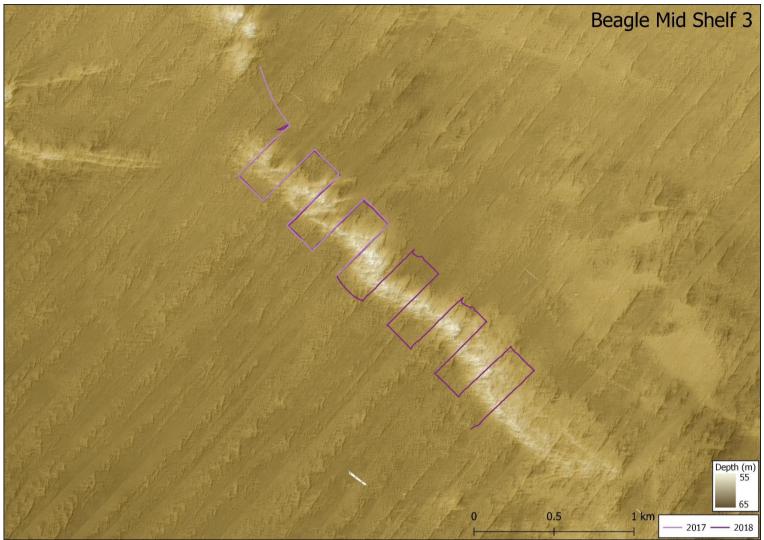
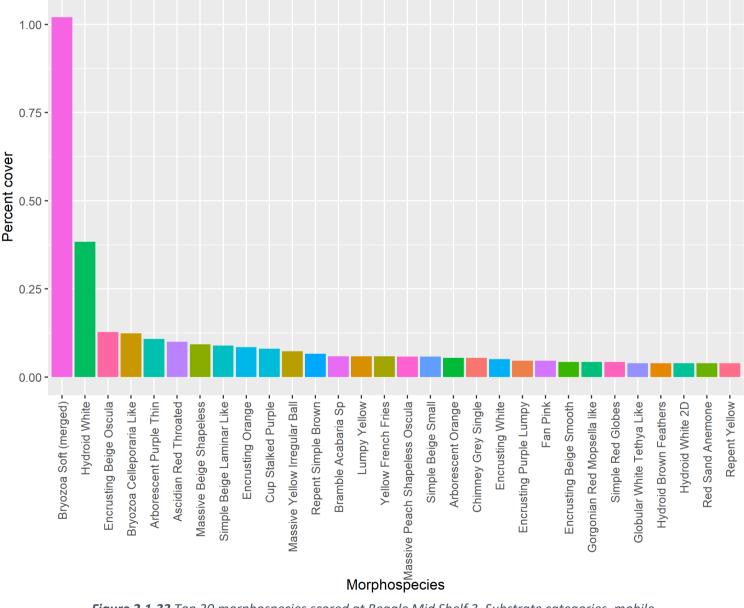


Figure 2.1.32 Site level map of Beagle Mid-Shelf 3.

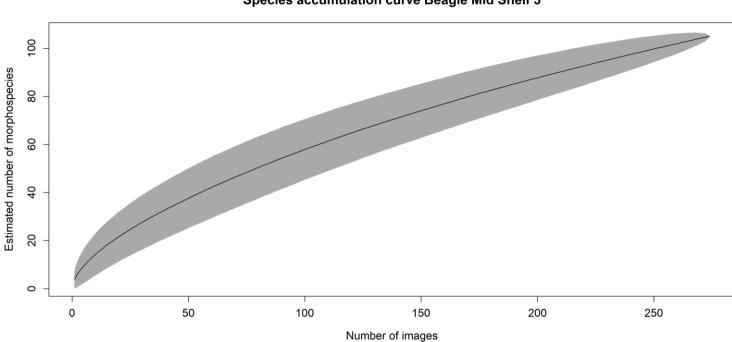
Description of habitat


The Beagle Mid Shelf 3 site is a mixed habitat twilight reef (55-65 m) shelf site with soft substrate habitat and a low relief (< 1 m) outcropping hard substrate feature. Hard substrate is often covered with a veneer of sand, while soft substrate areas often contain biogenic rubble and shell fragments and underlying screwshell and shellhash beds.

Description of biological community

The Beagle Mid-Shelf 3 contains a mix of hard and soft bryozoa, hydroids, ascidians and a variety of different sponge morphospecies (Figure 3.1.33). The mean cover of the biological matrix (bryozoa/cnidaria/sponge matrix) category at this site was an average of 3% over the time-series of data collected at this site. Example images from Beagle Mid Shelf 3 are contained in Appendix B.

SIMPER analysis revealed that characteristic species were soft bryozoa, hydroid white, encrusting beige oscula and the hard bryozoa (Celleporaria like).


Rarer, but potentially important species from a conservation perspective as they may be more susceptible to disturbance such as warming events include large gorgonian (Mopsella like) fans, soft corals (Capnella like) and bramble coral (Acabaria sp).

Beagle Mid Shelf 3: 30 most common morphospecies

Figure 2.1.33 Top 30 morphospecies scored at Beagle Mid Shelf 3. Substrate categories, mobile species and biological matrix categories were excluded.

Species accumulation curve

Species accumulation curve Beagle Mid Shelf 3

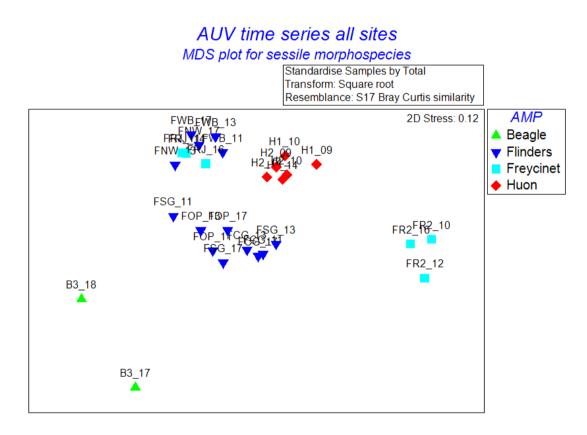
Figure 2.1.34 Species accumulation curve for Beagle Mid-Shelf 3.

The species accumulation curve reveals that the almost 300 images scored across time have not yet captured all the species richness at this site with the curve still not reaching an asymptote at 100 morphospecies (Figure 3.1.34).

2.2 Variability in cover across the time series: Population variability

Table 2.2.1 Results of the population variability (PV) analysis. PV values were calculated from modelbased estimates of cover each year within each marine park. The overall PV value (All AMPs) is the average of the PV value across each marine park it occurs. Morphospecies have been ordered from lowest to highest variability based on the overall PV value.

Morphospecies	Huon	Freycinet	Flinders	Beagle	All AMPs
Non-Calcareous Encrusting Red Algae	0.084	-	-	-	0.084
Calcareous Encrusting Red Algae	0.151	-	-	-	0.151
Cup Red Smooth (sponge)	0.168	0.266	0.08	-	0.171
Cup Yellow (sponge)	0.188	0.175	0.219	-	0.194
Encrusting Light Orange (sponge)	0.209	0.252	0.125	-	0.195
Arborescent Grey (sponge)	0.331	0.203	0.086	-	0.206
Massive Purple (sponge)	0.149	0.2	0.308	-	0.219
Repent Orange (sponge)	0.355	0.222	0.12	-	0.232
Coral Orange Solitary (Caryophyllia like)	-	0.176	0.317	-	0.247
Encrusting Yellow Smooth (sponge)	0.17	0.475	0.136	-	0.26
Arborescent Orange (sponge)	0.531	0.154	0.161	-	0.282
Encrusting Orange (sponge)	0.126	0.182	0.417	0.428	0.289
Bryozoa Stumpy Hard	-	0.436	0.171	-	0.304
Massive Blue Shapeless (sponge)	0.233	0.451	0.249	-	0.311
Encrusting White (sponge)	0.246	0.608	0.109	-	0.321
Palmate Grey (sponge)	0.19	0.449	0.324	-	0.321
Encrusting Beige Smooth (sponge)	0.217	0.515	0.182	0.42	0.333
Unstalked Crinoids	0.444	0.192	0.404	-	0.347
Arborescent Orange Thin (sponge)	0.292	0.2	0.559	-	0.35
Encrusting Purple Lumpy (sponge)	0.371	0.28	0.159	0.59	0.35
Bryozoa Soft (merged)	0.473	0.533	0.2	0.236	0.361
Lumpy White (sponge)	0.341	0.43	0.318	-	0.363
Fan Pink (sponge)	0.247	0.344	0.212	0.679	0.37
Hydroid White	0.508	0.253	0.319	0.462	0.385
Encrusting Beige Oscula (sponge)	0.388	0.579	0.262	0.319	0.387
Simple Beige Lumpy (sponge)	0.4	0.468	0.289	0.466	0.406
Simple Beige Lumpy Shapeless (sponge)	0.47	0.626	0.14	0.466	0.425
Bramble Coral	-	0.44	0.418	-	0.429
Encrusting Blue (sponge)	0.207	0.873	0.263	-	0.448
Encrusting Black (sponge)	0.584	0.578	0.173	0.591	0.482
Purple Massive (sponge)	0.796	0.438	0.249	-	0.494
Branching Gray Fine Repent Like (sponge)	0.484	0.577	0.435	-	0.499
Repent Yellow (sponge)	0.566	0.451	0.324	0.678	0.505
Encrusting White Lumpy (sponge)	0.491	0.703	0.351	-	0.515
Gorgonian Red	0.203	0.692	0.784	-	0.56
Epizoanthus sp	0.575	0.729	0.637	-	0.647
Ascidian Colonial Purple	-	0.656	-	-	0.656


The PV analysis allowed a direct comparison of the variability in cover of each morphospecies in the time-series to date (Table 3). There were sometimes considerable differences in PV values for a single morphospecies between different marine parks, for example the Cup Red Smooth morphospecies had a low PV value for Flinders Marine Park, and a much higher value for Freycinet Marine Park. These differences are likely in part to be due to sampling error, as despite using model-based estimates, where abundances are low there will be considerable variability in estimates.

The lowest variability morphospecies were the encrusting red algal morphospecies at Huon Marine Park. However, as these morphospecies only occurred in one marine park, overall PV values are not influenced by PV values elsewhere as they are for most other morphospecies. Both cup sponge morphospecies (Cup Red Smooth and Cup Yellow) had low overall variability over the time series. Arborescent Grey, Massive Purple and Encrusting Light Orange sponges also had relatively low PV values.

Higher variability morphospecies included Ascidian Colonial Purple, Epizoanthus sp. and Gorgonian Red. Ascidian Colonial Purple is an encrusting ascidian that occurred only at Joe's Reef. While it may have variable cover through time, the PV value may also reflect sampling variability as it was noted to have high cover across a small number of images and therefore whether those images were sampled in a given year would affect within year estimates. For Epizoanthus sp. and Gorgonian Red, higher PV values were related to significant trends detected in their cover (see "Analysis of temporal trends for dominant morphospecies" section below).

2.3 Multivariate analysis of trend

Multivariate multi-dimensional scaling (MDS) showed that sites within marine parks and across time were relatively similar (Figure 3.3.1). The Beagle Mid-Shelf 3 site and Freycinet site 2 were distinctly different to all other sites. Freycinet site 2 is low relief and sand dominated, with a relatively low diversity of invertebrates. The Beagle Mid-Shelf 3 site is also sand dominated but contained several morphospecies not located in any of the other sites. The Huon Marine Park sites 1 and 2 were quite similar in terms of morphospecies composition and grouped distinctly from other sites due to characteristic morphospecies not found at other sites. In particular, the presence of significant cover of encrusting coralline and other encrusting red algae distinguished Huon Marine Park from the other marine parks. There was an overlap between the Flinders Marine Park sites and Joe's Reef, with many sessile invertebrate morphospecies shared across these sites. In particular, red smooth and yellow cup sponges, arborescent orange and grey sponges and many different encrusting sponge morphospecies were found across these sites.

Figure 2.3.1 Multi-dimensional scaling (MDS) plot for all sites across all years surveyed. Only sessile morphospecies were included.

PERMANOVA analysis found that there were no significant shifts in community structure across the survey years within each marine ark. PERMANOVA could not be conducted for Beagle Marine Park as there were only 2 survey years and thus insufficient degrees of freedom for the test.

2.3.1.1 PERMANOVA results: Huon Marine Park

Factors Name Abbrev. Type Levels Year Ye Fixed 3 PERMANOVA table of results Source df SS MS Pseudo-F P(perm) perms Ye 2 1580.5 790.24 1.8569 0.116 15 Res 3 1276.7 425.56 Total 5 2857.2

2.3.1.2 PERMANOVA results: Freycinet Marine Park

Factors Name Abbrev. Type Levels Year Ye Fixed 5

PERMANOVA table of results

Unique Source df SS MS Pseudo-F P(perm) perms Ye 4 7803.9 1951 0.73904 0.477 15 Res 1 2639.9 2639.9 Total 5 10444

2.3.1.3 PERMANOVA results: Flinders Marine Park

Factors Name Abbrev. Type Levels Year Ye Fixed 3

PERMANOVA table of results

Unique Source df SS MS Pseudo-F P(perm) perms Ye 2 2249 1124.5 0.69987 0.86 995 Res 11 17674 1606.7 Total 13 19923

2.4 Analysis of temporal trends for dominant morphospecies

2.4.1 Arborescent Grey

Arborescent Grey

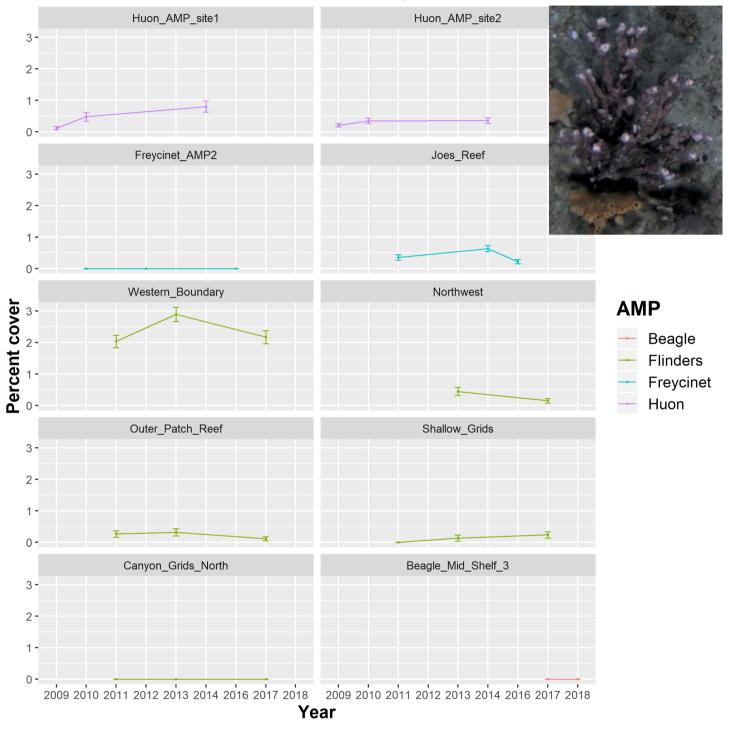


Figure 2.4.1 Site level trends in the raw data for Arborescent Grey sponges.

2.4.1.1 Model-based estimates of trend

All Marine Parks

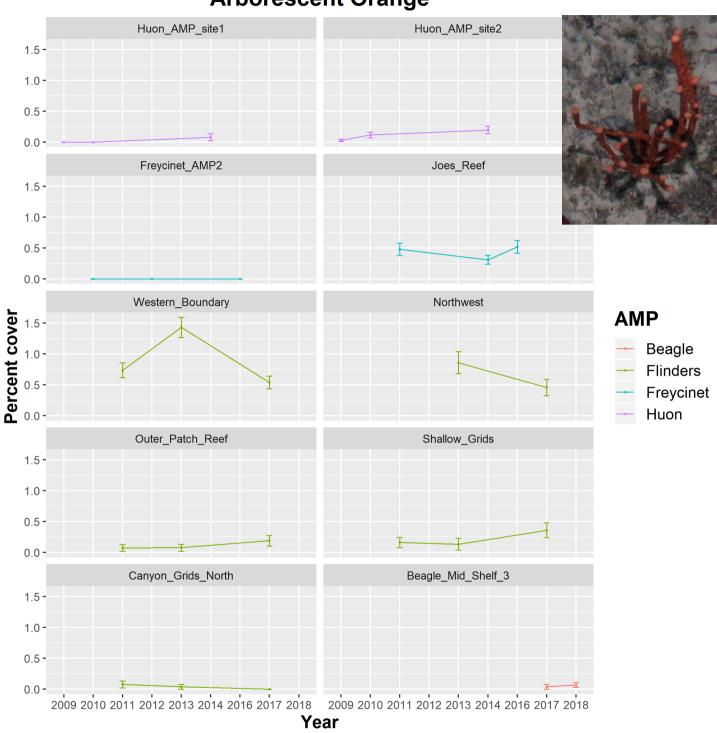
Fixed effects:							
	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld
intercept	-7.317	0.250	-7.811	-7.317	-6.829	-7.315	0
year	-0.138	0.083	-0.301	-0.138	0.024	-0.137	0
depth	-2.015	0.185	-2.387	-2.012	-1.662	-2.006	0

Random effects: Name Model AMP IID model i SPDE2 model

Model hyperparameters:

	mean	sd 0.025quant	0.5quant	0.975quant	mode
Precision for AMP	6.393 3.4	424 2.101	5.635	15.14	4.382
Range for i	18.606 5.2	10.726	17.797	31.02	16.280
Stdev for i	1.450 0.1	125 1.207	1.450	1.70	1.457
GroupRho for i	0.714 0.0	0.534	0.718	0.86	0.728

Huon Marine Park


	.170 -6	5.577 - <u>6</u> .		uant mode 909 -6.229 606 0.351			
depth -0.372 0	.176 -0).729 -0.	.368 -0.	037 -0.360	0		
Random effects: Name Model site IID model i SPDE2 model							
Model hyperparameters:							
mode	mean	sd	0.025quant	0.5quant	0.975quant		
Precision for site	18887.906	19072.222	1316.075	13234.053	69827.997	362	
Range for i 5.208	47.351	21.970	18.376	42.820	102.581	3	
Stdev for i 0.944	0.972	0.197	0.622	0.961	1.393		
GroupRho for i 0.879	0.846	0.064	0.689	0.857	0.938		

Freycinet Marine Park

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -6.348 0.793 -7.910 -6.347 -4.795 -6.345 0 year -0.031 0.077 -0.183 -0.031 0.121 -0.030 0 Random effects: Name Mode] site IID model i SPDE2 model Model hyperparameters:

Precision for site Range for i Stdev for i GroupRho for i	mean 0.401 12.042 1.268 0.700	0.344 0. 2.693 7. 0.150 0.	uant 0.5quant 065 0.305 562 11.774 998 1.260 415 0.719	0.975quant mode 1.309 0.169 18.096 11.265 1.586 1.244 0.878 0.757
Flinders Mar	ine Park			
Fixed effects: mean intercept -6.670 0 year -0.039 0 depth -1.981 0 Random effects: Name Model site IID model i SPDE2 model	. 430 . 078	-0.192 -0.	.661 -5.85 .038 0.11	nt mode kld 52 -6.643 0 L4 -0.038 0)3 -1.868 0
Model hyperparameto Precision for site Range for i Stdev for i GroupRho for i	mean 1.750	1.304 0. 2.682 7. 0.151 0.	uant 0.5quant 314 1.421 621 11.810 995 1.260 422 0.711	0.975quant mode 5.148 0.837 18.109 11.295 1.586 1.246 0.881 0.744

No overall trend was found for arborescent grey sponges across all marine parks. A positive trend was detected in arborescent grey sponge cover in Huon Marine Park, while for all other parks no significant linear trend was detected. The mean estimated trend at Huon Marine Park equates to a 42% increase in the odds of presence per year over the survey period. Also, an overall negative coefficient estimate for depth indicates that arborescent grey sponges tend to occupy shallower depths across those that were surveyed.

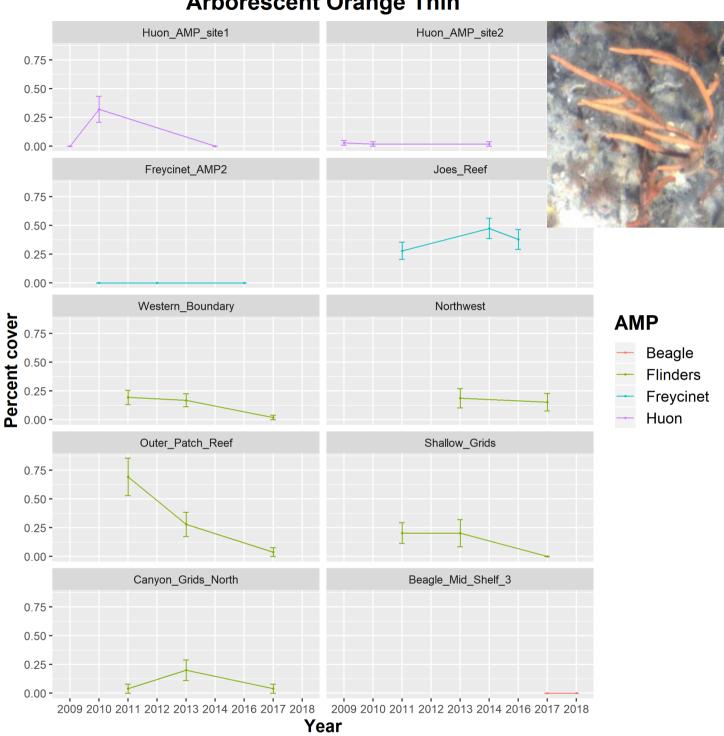
2.4.2 Arborescent Orange Arborescent Orange

Figure 2.4.2 Site level trends in the raw data for Arborescent Orange sponges.

2.4.2.1 Model-based estimates of trend

All Marine Parks

Fixed effects: mean intercept -7.415 year 0.010 depth -1.308	0.312 -8.028 0.092 -0.171		-6.805 0.190	-7.413 0.010	.d 0 0	
Random effects: Name Model AMP IID model i SPDE2 model					-	
	mean sd 0.02 3.245 1.812 13.356 2.759 1.623 0.190		2.871 13.126 1.614	7.781 19.438 1 2.023	mode 2.146 2.697 1.597 0.833	
Huon Mai	ine Park					
year 0.714	sd 0.025quant 0.261 -8.060 0.227 0.281 0.241 -0.323	-7.501 0.710	-7.03	2 -7.477 1 0.701	0	
Name Model site IID mod i SPDE2 model	el					
Model hyperparam	eters: mean	sd 0.02	25quant (.5quant	0.975quant	
mode Precision for si 7.080	te 18470.886 1807	8.065 12	253.984 13	148.802	66466.723	342
Range for i 1.860	50.917 4	8.855	13.790	35.953	177.252	2
Stdev for i 0.028	0.275	0.209	0.013	0.223	0.735	
GroupRho for i 0.881	0.865	0.047	0.760	0.870	0.941	
Freycinet	Marine Park					
Fixed effects: mean intercept -7.558 year -0.035 depth -1.591	0.284 -8.154 0.165 -0.357	-7.545 -0.035	-7.03 0.28	nt mode 6 -7.518 9 -0.036 87 -1.559	0 0	
Random effects: Name Model site IID mod i SPDE2 model	e]					


Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for 1.076	site 19605.717	20191.821	1406.712	13601.274	73347.406	385
Range for i	22.377	9.997	9.172	20.305	47.484	1
6.868 Stdev for i 1.136	1.182	0.237	0.769	1.165	1.696	
GroupRho for i 0.876	0.843	0.066	0.682	0.854	0.938	

Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld -6.383 -6.664 0.061 -0.130 -1.076 -1.477 intercept -6.683 0.161 -7.017 -6.677 0 year -0.131 0.099 -0.326 -0.131 0 -1.497 depth -1.507 0.234 -1.994 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: mean sd 0.025guant 0.5guant 0.975guant mode Precision for site 18881.743 18451.774 1290.21 13455.965 67702.540 353 3.997 12.850 2.769 8.38 Range for i 12.512 19.217 1 1.842 Stdev for i 1.591 0.198 1.23 1.580 2.011 1.562 GroupRho for i 0.082 0.821 0.928 0.808 0.61 0.848

No overall trend was found for arborescent orange sponges across all marine parks. A positive trend was detected in arborescent orange sponge cover in Huon Marine Park, while for all other parks no significant linear trend was detected. The mean estimated trend at Huon Marine Park equates to a 104% increase in the odds of presence per year over the survey period. Also, an overall negative coefficient estimate for depth indicates that arborescent orange sponges tend to occupy shallower depths across those that were surveyed.

2.4.3 Arborescent Orange Thin Arborescent Orange Thin

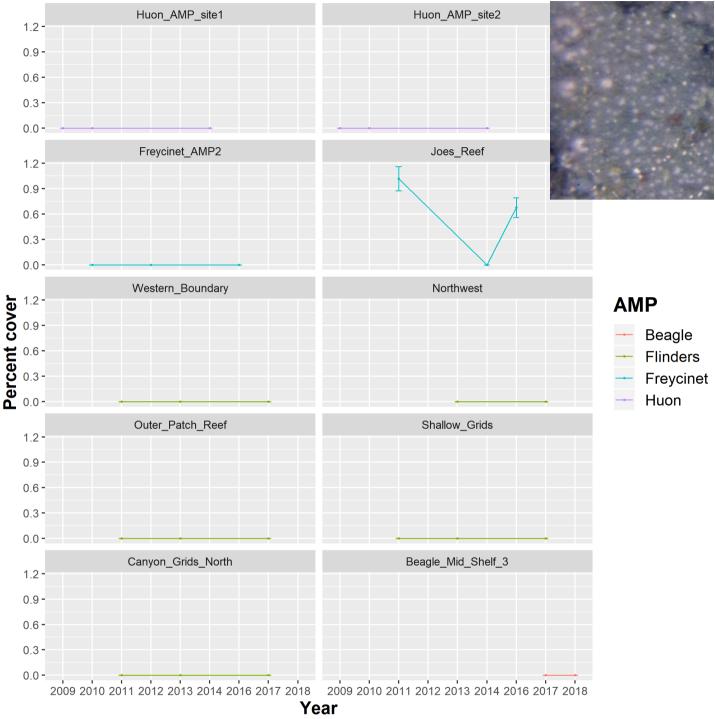
Figure 2.4.3 Site level trends in the raw data for Arborescent Orange Thin sponges.

2.4.3.1 Model-based estimates of trend All Marine Parks

Fixed effects:					.1.4
mea intercept -7.97	'5 0.315	-8.600 -7		.364 -7.968	0
	3 0.239	-1.019 -0		.079 -0.536	0
depth -0.29	07 0.299	-0.892 -0	.293 0	0.282 -0.287	0
Random effects: Name Model AMP IID mod i SPDE2 mode	lel				
Model hyperpara	meters: mean	cd (02Equant	0.5quant 0.97	75auant mode
Precision for A			-		97.433 3206.181
Range for i	508.17	186.800	240.055		961.384 418.298
Stdev for i	1.59	0.235	1.182	1.568	2.103 1.527
GroupRho for i	0.82	0.062	0.678	0.828	0.919 0.843
Huon N	1arine Park				
Fixed effects:	an sd 0.0	25guant 0.	5quant 0.97	'5guant mod	e kld
intercept -9.2	11 0.418	-10.090	-9.190	-8.448 -9.14	9 0
	62 0.401 26 0.339	-1.010 -0.459	-0.140 0.233	0.567 -0.09 0.874 0.24	
Random effects Name Model site IID m i SPDE2 mode	odel				
Model hyperpara		2.0		nt 0 Equant	0.075auant
mode			-	nt 0.5quant	-
Precision for 9.004	site 19401.2	55 19468.7	1352.1	89 13636.396	71184.667 369
Range for i	48.5	92 24.1	26 19.5	49 42.751	111.087 3
4.020 Stdev for i	1.8	28 0.4)1 1.1	45 1.795	2.712
1.733					0.020
GroupRho for i 0.879	0.8	4) 0.0	56 0.6	682 0.856	0.939

Freycinet Marine Park

Fixed effects: meansd0.025quant0.5quant0.975quantmodekldintercept-7.0450.228-7.521-7.036-6.623-7.0170year0.1510.161-0.1620.1500.4710.1470depth-1.1170.226-1.584-1.109-0.695-1.0940 Random effects: Name Model site IID model i SPDE2 model Model hyperparameters:


	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for 3.837	site 19028.968	19116.433	1314.885	13365.410	70060.750	360
Range for i	70.135	104.931	10.030	39.728	315.902	1
9.561 Stdev for i 0.776	0.842	0.257	0.412	0.821	1.403	
GroupRho for i 0.873	0.839	0.068	0.676	0.851	0.937	

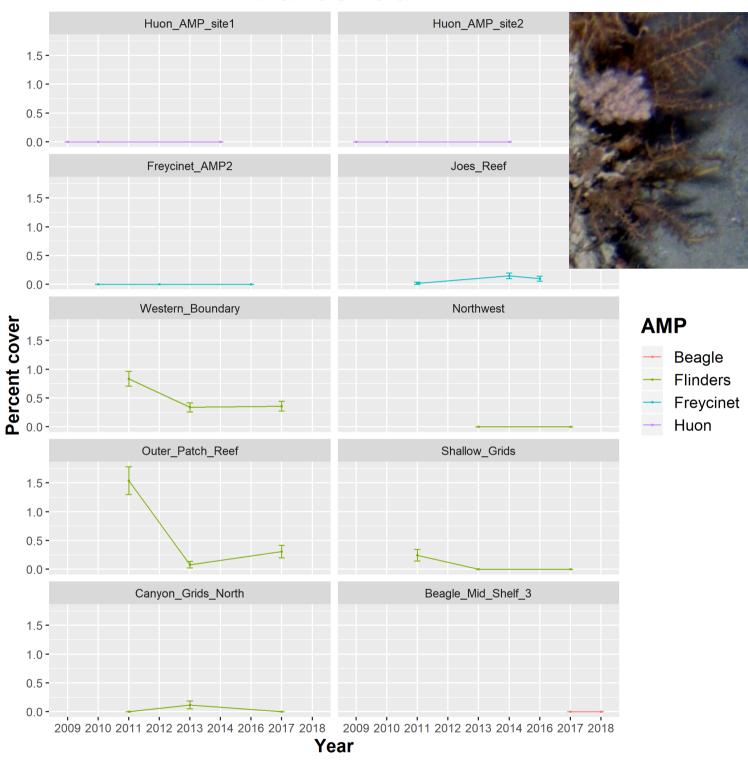
Flinders Marine Park

Fixed effects: mean intercept -7.151 0. year -0.690 0.	.173 -7	7.505 – 7.		ant mode 824 -7.138 375 -0.675		
depth -0.184 0.				149 -0.171		
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete		cd	0.025quant	0 Squant	0 075 quant	
mode	mean	Su	0.023quant	0. Squarre	0.97 Squarre	
Precision for site 4.246	19472.154	19371.979	1321.501	13741.164	71085.597	361
Range for i 4.727	38.724	22.939	11.911	33.134	98.306	2
Stdev for i	1.049	0.215	0.671	1.036	1.513	
1.013 GroupRho for i 0.872	0.835	0.071	0.661	0.848	0.936	

An overall linear decline was found for arborescent orange thin sponges across all marine parks, equating to an overall 42% decline per year. A negative trend was also found for Flinders Marine Park, equating to a 50% decrease in the odds of presence per year over the survey period. No significant overall depth relationship was found.

2.4.4 Ascidian Colonial Purple Ascidian Colonial Purple

Figure 2.4.4 Site level trends in the raw data for Ascidian Colonial Purple.


2.4.4.1 Model-based estimates of trend

Freycinet Marine Park

Fixed effects: mean intercept -14.812 1. year -1.030 0. depth -3.466 0.	.071 -1 .572 -	L7.154 -14 -2.192 -1	L.017 (quant mc 2.957 -14.5).055 -0.9 L.772 -3.2	90 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparameter	rs: mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 1 0.583	L9870.720	20418.043	1419.075	13800.853	74263.771	391
Range for i	27.522	6.180	17.410	26.837	41.559	2
5.518 Stdev for i	3.853	0.464	3.015	3.828	4.840	
3.781 GroupRho for i 0.867	0.836	0.064	0.681	0.847	0.931	

No trend was found for ascidian colonial purple. As this morphospecies only occurred at Joe's Reef in Freycinet Marine Park, a global model was not run. The negative coefficient for depth indicates that this morphospecies occupied shallower depths at the Joe's Reef site.

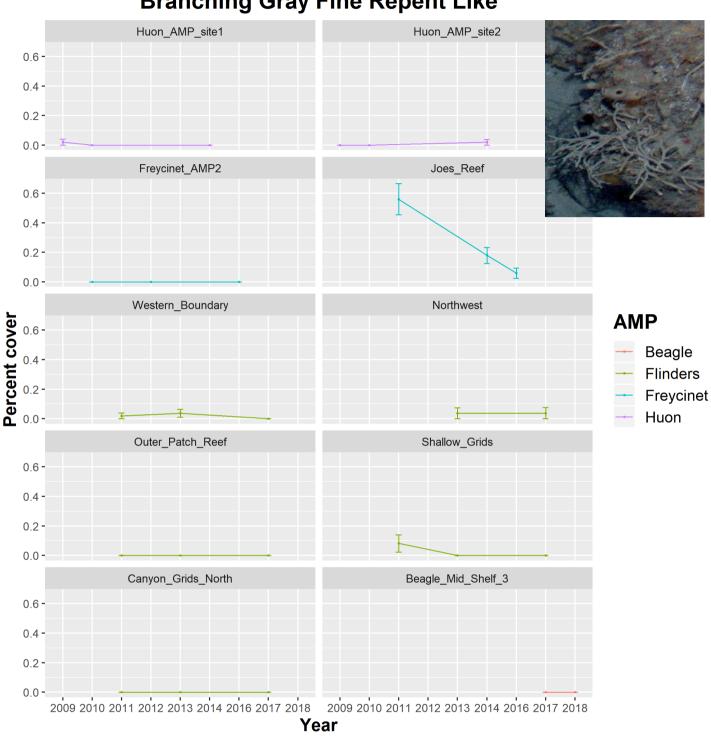
2.4.5 Bramble Coral

Bramble Coral

Figure 2.4.5 Site level trends in the raw data for Bramble Coral (A. kareni like).

2.4.5.1 Model-based estimates of trend

All Marine Parks


Fixed effects:	
meansd0.025quant0.5quant0.975quantmodekldintercept-9.9360.378-10.698-9.930-9.211-9.9170year-0.2480.294-0.833-0.2460.323-0.2410depth-0.4280.385-1.203-0.4210.311-0.4080	
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode	2
Precision for AMP 22885.357 64250.760 638.762 7993.494 137523.634 1499.409	
Range for i 240.600 65.129 137.922 232.127 391.796 216.148	
Stdev for i 2.369 0.322 1.845 2.329 3.104 2.234	
GroupRho for i 0.838 0.064 0.703 0.843 0.944 0.859	
Freycinet Marine Park	
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -8.814 0.476 -9.844 -8.779 -7.977 -8.705 0 year 0.479 0.335 -0.143 0.466 1.173 0.440 0 depth -1.231 0.407 -2.100 -1.206 -0.498 -1.155 0	
Random effects: Name Model site IID model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant	
mode Precision for site 18851.868 18542.742 1360.596 13409.937 67719.320 374	1
3.807 Range for i 21.015 12.895 7.158 17.545 55.037 1 2.952	L
Stdev for i 0.896 0.511 0.185 0.810 2.103 0.536	
GroupRho for i 0.845 0.066 0.684 0.857 0.939 0.879	
Flinders Marine Park	

Flinders Marine Park

Fixed effe	mean		0.025quant -8.683	0.5quant -8.029	0.975quant -7.407		k1d 0
	-0.459 -0.420		-0.891 -1.168	-0.457 -0.413		-0.452 -0.399	0 0
	Model IID mode	el					

Model hyperparameters:									
	mean	sd	0.025quant	0.5quant	0.975quant				
mode									
Precision for site	e 18884.219	18499.385	1258.392	13428.894	67794.933	343			
0.342						-			
Range for i	116.736	42.099	54.426	110.169	217.705	9			
7.920									
Stdev for i	1.841	0.254	1.387	1.826	2.385				
1.799									
GroupRho for i	0.744	0.086	0.544	0.755	0.878				
0.777									

No overall trend was found for bramble coral across all marine parks. A negative trend was detected in cover of bramble coral in Flinders Marine Park equating to a 37% decrease per year over the survey period. In particular, there was a notable decline between the first survey (2011) and second survey (2013). This trend is evident at all sites except the Canyon Grids North site, where there was low overall cover and little change and the Northwest site where the morphospecies was absent. The small apparent increase visible in the plots at Joe's Reef in Freycinet Marine Park was found to be non-significant. No significant effect was found for depth.

2.4.6 Branching Gray Fine Repent Like Branching Gray Fine Repent Like

Figure 2.4.6 Site level trends in the raw data for Branching Gray Fine Repent like sponges.

2.4.6.1 Model-based estimates of trend

All Marine Parks

Fixed effects:								
	mean	sd	0.025quant	0.5quant	0.975quant	mode	kld	
intercept	-10.092	0.404	-10.923	-10.079	-9.335	-10.053	0	
year	-0.513	0.312	-1.148	-0.505	0.078	-0.490	0	
depth	-0.419	0.479	-1.436	-0.392	0.449	-0.337	0	

Random effects: Name Model AMP IID model i SPDE2 model

Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	mode
Precision for AMP	19798.961	19840.812	1447.138	13948.91	72211.471	3999.35
Range for i	324.724	166.775	130.499	282.68	760.330	221.53
Stdev for i	1.799	0.324	1.244	1.77	2.516	1.72
GroupRho for i	0.858	0.057	0.715	0.87	0.936	0.89

Huon Marine Park

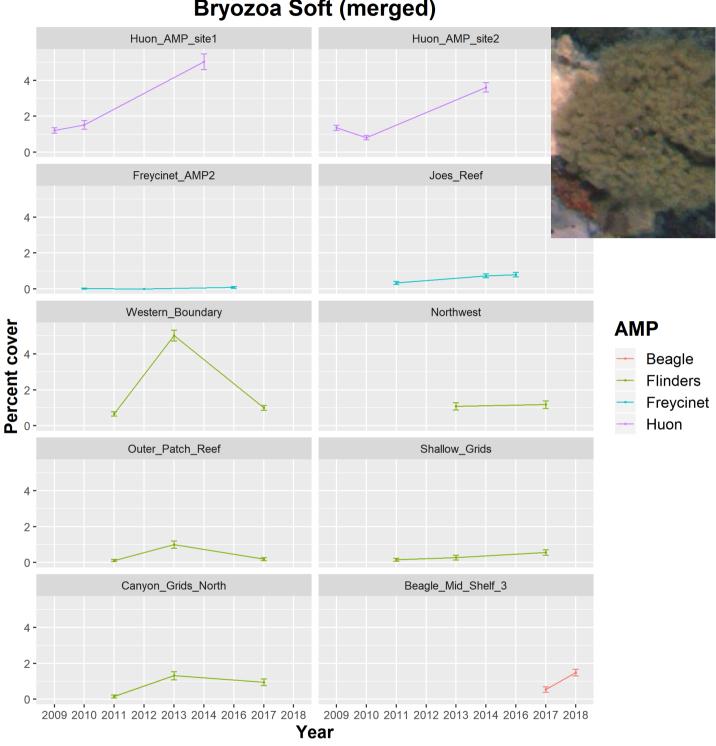
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.786 0.809 -11.582 -9.705 -8.417 -9.530 0 year 0.646 0.582 -0.513 0.652 1.775 0.662 0 depth 0.868 0.578 -0.184 0.839 2.085 0.779 0 Random effects:

Name Model site IID model i SPDE2 model

Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	
mode			•	•		
Precision for	site 18649.260	18399.967	1266.924	13218.557	67274.78	346
3.351						
Range for i	40.882	50.818	4.664	25.678	169.69	1
1.636						
Stdev for i	0.316	0.329	0.031	0.219	1.19	
0.086						
GroupRho for i	0.848	0.064	0.691	0.860	0.94	
0.881						

Freycinet Marine Park


Fixed effe		hə	0 025quant	0 Squant	0.975quant	mode	k]d
intercept	-8.230	0.341	-8.948	-8.213	-7.607		Ö
year	-0.730	0.237	-1.208	-0.726	-0.278	-0.717	0
depth	-1.345	0.328	-2.029	-1.331	-0.741	-1.302	0
Random eff Name site I i SPDE2	Model ID mode	9]					

Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 19336.70 19364.112 1351.821 13607.536 70923.916 370 1.089 33.69 13.863 30.623 Range for i 14.937 71.227 2 5.508 Stdev for i 0.884 1.32 0.247 1.302 1.849 1.274 0.673 GroupRho for i 0.84 0.068 0.852 0.937 0.875

Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -9.203 0.535 -10.385 -9.152 -8.290 -9.044 0 year -0.490 0.410 -1.362 -0.466 0.250 -0.418 0 depth -1.006 0.719-2.606 -0.9330.208 -0.774 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18608.856 18378.128 1265.311 13183.084 67177.78 345 8.619 44.095 56.199 5.213 27.309 186.55 1 Range for i 2.635 Stdev for i 0.284 0.281 0.023 0.201 1.03 0.066 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.881

No overall trend was found for branching grey fine repent like grey sponges across all marine parks. A positive trend was detected in Huon Marine Park, with the mean estimated trend at Huon Marine Park equating to a 91% increase in the odds of presence per year over the survey period. A negative trend was detected in Freycinet Marine Park, with the mean estimated trend equating to a 52% decrease in the odds of presence per year over the survey period. No overall significant effect was found for depth.

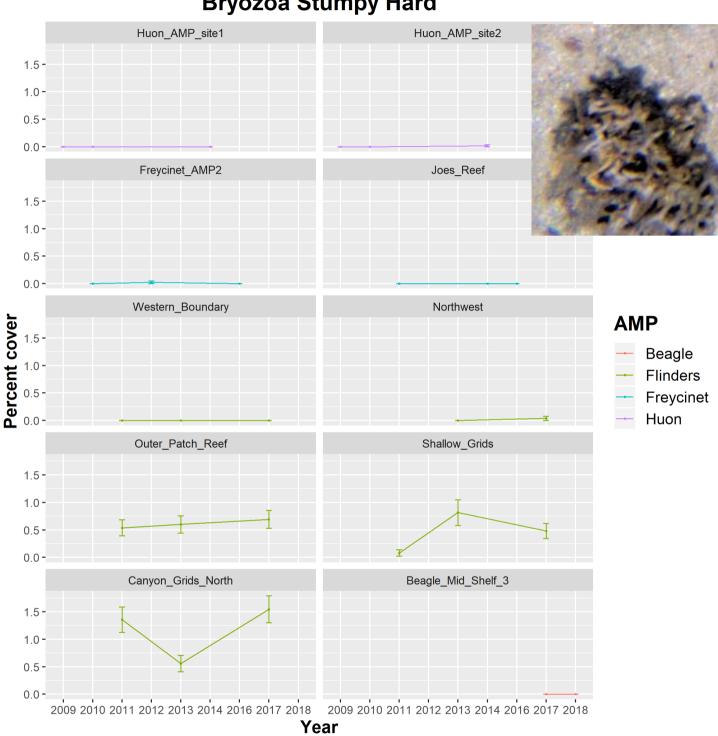
2.4.7 Bryozoa Soft (merged) Bryozoa Soft (merged)

Figure 2.4.7 Site level trends in the raw data for Bryozoa Soft (merged).

2.4.7.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld	
intercept -5.875 0.360 -6.583 -5.875 -5.168 -5.875 0	
year 0.430 0.103 0.228 0.430 0.632 0.430 0	
depth -0.393 0.108 -0.606 -0.393 -0.183 -0.392 0	
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975quant mode	
Precision for AMP 2.391 0.639 1.500 2.266 3.963 2.018	
Range for i 72.509 11.655 53.091 71.273 98.671 68.621	
Stdev for i 1.448 0.075 1.310 1.444 1.606 1.434	
GroupRho for i 0.587 0.074 0.427 0.592 0.718 0.603	
<i>Huon Marine Park</i> Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld	
intercept -4.248 0.112 -4.470 -4.248 -4.029 -4.247 0	
year 0.577 0.085 0.409 0.577 0.744 0.577 0 depth -0.179 0.095 -0.366 -0.179 0.005 -0.178 0	
depth -0.179 0.095 -0.366 -0.179 0.005 -0.178 0	
Random effects: Name Model site IID model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975quant mode	
Precision for site 22278.123 24985.365 1702.146 14761.248 87706.825 46 2.621	5
	2
Stdev for i 1.337 0.126 1.105 1.332 1.599	
1.323 GroupRho for i 0.796 0.081 0.604 0.809 0.916 0.834	

Freycinet Marine Park


Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld 17 -7.620 -7.171 -6.770 -7.159 0 mean intercept -7.178 0.217 year 0.627 0.172 depth -0.991 0.212 -6.770 -7.159 0.972 0.620 -0.591 -0.975 **0.296** -1.423 **0.625** -0.986 <mark>year</mark> depth **0** 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	
	site 21932.464	22476.234	1666.483	15280.673	81528.980	461
5.987 Range for i 7.268	19.281	5.195	11.150	18.584	31.394	1
Stdev for i 1.619	1.659	0.213	1.278	1.645	2.115	
GroupRho for 0.862	i 0.831	0.068	0.669	0.841	0.933	

Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -5.751 0.226 -5.750 -5.309 -5.749 -6.197 Ω 0.146 0.173 -0.1940.146 0.485 0.146 year 0 -0.690 -0.225 Ô depth -0.226 0.235 0.232 -0.224 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 18814.802 18121.964 1361.687 13535.789 66978.009 376 3.665 Range for i 170.064 35.152 112.693 165.994 250.313 15 7.895 Stdev for i 1.391 1.398 0.142 1.141 1.698 1.375 GroupRho for i 0.485 0.109 0.253 0.491 0.679 0.503 0.522 2.4.7.2 **Beagle Marine Park** Fixed effects: sd 0.025guant 0.5guant 0.975guant mode kld mean intercept -5.945 0.254 -5.455 -5.934 -5.941 -6.454 0 0.557 0.069 year 0.079 0.238 -0.378 0.076 0 -0.721 0.212 0 depth -1.138-0.720 -0.305 -0.720 Random effects: Name Mode] site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 19557.549 19402.622 1330.611 13823.862 71232.061 364 3.642 Range for i 65.064 20.315 34.883 61.800 113.817 5 5.824 1.707 Stdev for i 0.265 1.241 1.688 2.284 1.652 GroupRho for i 0.848 0.065 0.688 0.859 0.939 0.881 0.878

An overall trend was found for soft bryozoans across all marine parks equating to a 54% increase in the odds of presence per year. Positive trends were also detected in Huon Marine Park (78% increase in odds of presence per year) and Freycinet Marine Park (87% increase in odds of presence per year). An overall negative effect was found for depth, suggesting that soft bryozoans tend to prefer the shallower depth across those that were surveyed.

2.4.8 Bryozoa Stumpy Hard Bryozoa Stumpy Hard

Figure 2.4.8 Site level trends in the raw data for Bryozoa Stumpy Hard.

2.4.8.1 Model-based estimates of trend

All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.777 0.459 -10.703 -9.769 -8.900 -9.752 0 year 0.173 0.271 -0.358 0.172 0.706 0.171 0 depth 1.245 0.391 0.479 1.244 2.015 1.242 0 Random effects: Name Model AMP IID model
i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode
Precision for AMP 19394.71018695.1641251.44213904.6268918.8743377.382Range for i345.328100.547194.722329.37585.940299.731Stdev for i2.3850.3041.8562.363.0522.305GroupRho for i0.9250.0270.8590.930.9640.939
Freycinet Marine Park
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -10.241 0.853 -12.146 -10.150 -8.811 -9.952 0 year -0.165 0.672 -1.577 -0.133 1.064 -0.068 0 depth 0.592 0.827 -0.839 0.521 2.405 0.371 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 18768.786 18495.104 1301.536 13319.997 67602.530 356
5.662 Range for i 71.627 136.571 6.784 34.820 365.168 1
4.615 Stdev for i 0.215 0.200 0.016 0.158 0.746
0.045 GroupRho for i 0.848 0.064 0.692 0.860 0.940 0.881
Flinders Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -7.169 0.328 -7.824 -7.165 -6.536 -7.157 0 year 0.113 0.160 -0.202 0.113 0.427 0.114 0 depth 1.559 0.324 0.926 1.558 2.197 1.556 0
Random effects: Name Model site IID model i SPDE2 model

i SPDE2 model

Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for sit 8.925	e 18320.634	18197.834	1251.835	12940.53	66494.153	341
Range for i	158.092	45.358	91.963	150.18	268.149	13
5.347 Stdev for i 1.668	1.715	0.204	1.356	1.70	2.155	
GroupRho for i 0.914	0.893	0.041	0.792	0.90	0.952	

No significant linear trends were found for the Bryozoa Hard Stumpy morphospecies. This morphospecies is a dominant morphospecies at the Flinders Shallow Grids and Canyon Grids North sites. An overall positive effect for depth was found, suggesting this morphospecies is found in greater depths across those surveyed. This is likely to be driven by the occurrence of this morphospecies at the Canyon Grids North site in Flinders, the deepest site surveyed.

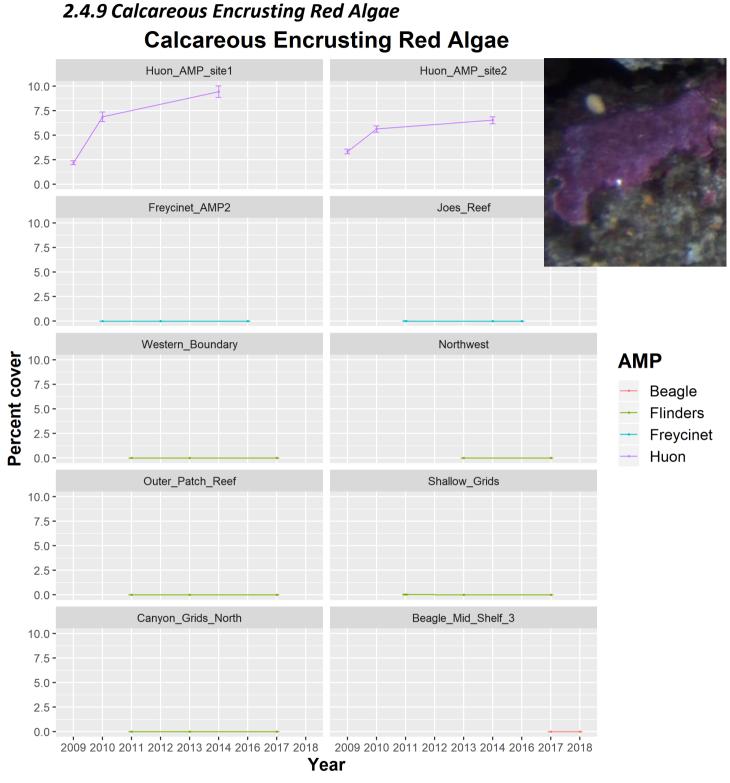


Figure 2.4.9 Site level trends in the raw data for Calcareous Encrusting Red Algae.

2.4.9.1 Model-based estimates of trend

Huon Marine Park

Fixed effects: mean intercept -3.523 0	sd 0.0250		uant 0.975qu .523 -3.	ant mode	kld 0	
				261 0.136	5 Ő	
depth -0.982 0	-10.095	L.171 -0	.980 -0.	798 -0.978	3 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamet	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode	10002 042	10472 255	1175 020	12204 446	67624 000	214
Precision for site 2.291	18693.643	18473.255	11/5.038	13204.446	67624.080	314
Range for i 5.229	38.203	7.398	26.408	37.241	55.314	3
Stdev for i	1.035	0.082	0.884	1.031	1.205	
GroupRho for i 0.879	0.855	0.054	0.725	0.863	0.935	

Calcareous encrusting red algae is a dominant morphospecies within Huon Marine Park, which includes depths that have sufficient light penetration to support algal communities. An overall positive trend equating to a 15% increase in the odds of presence per year over the survey period. This is a relatively small increase and is less than is suggested by the plots of the raw data above. This is likely due to the wider spatial coverage of the survey in 2009 which also encompassed greater depths where algae are less likely to be present.

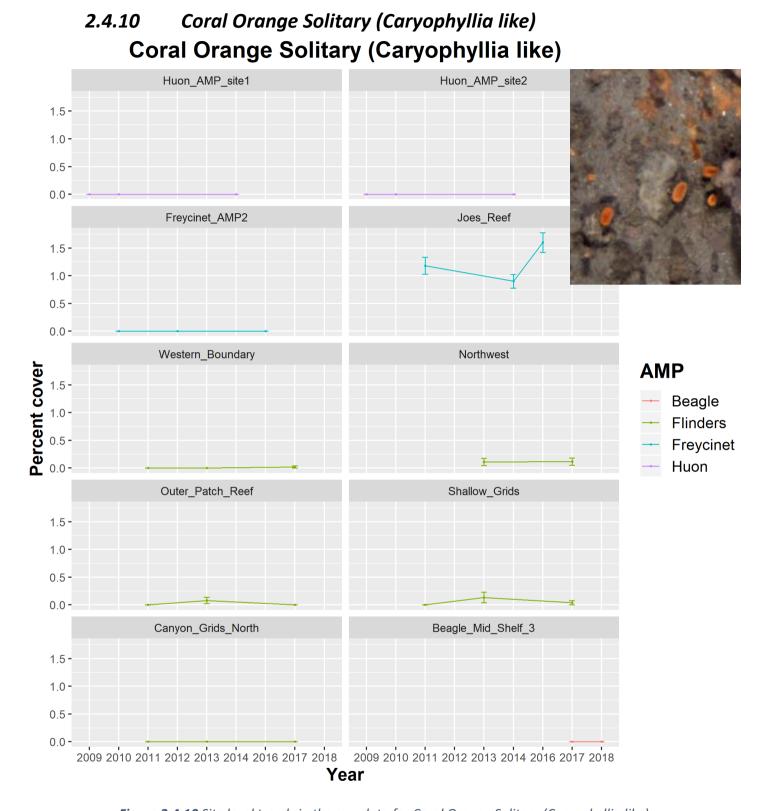


Figure 2.4.10 Site level trends in the raw data for Coral Orange Solitary (Caryophyllia like).

2.4.10.1 Model-based estimates of trend

All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -10.430 1.295 -13.022 -10.414 -7.934 -10.380 0 year 0.217 0.286 -0.342 0.216 0.778 0.215 0 depth -1.741 0.502 -2.726 -1.741 -0.755 -1.742 0	
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters:	
meansd 0.025quant 0.5quant 0.975quantmodePrecision for AMP0.2940.3490.0280.1891.1970.074Range for i556.930281.365203.637493.9751272.667393.713Stdev for i1.3720.2980.8731.3442.0391.289GroupRho for i0.8960.0390.8010.9020.9530.914	
Freycinet Marine Park	
Fixed effects:	
meansd0.025quant0.5quant0.975quantmodekldintercept-6.3440.236-6.824-6.338-5.896-6.3260year0.1350.126-0.1120.1350.3830.1350depth-1.6360.221-2.084-1.631-1.214-1.6220	
Random effects: Name Model site IID model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975quant mode	2
Precision for site 18831.491 17900.548 1436.080 13666.395 66575.592 402 8.396	_
2.360	6
Stdev for i 0.776 0.151 0.512 0.766 1.101 0.749	
GroupRho for i 0.849 0.058 0.710 0.858 0.935 0.876 0.915	
Flinders Marine Park	
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -8.430 0.348 -9.181 -8.405 -7.817 -8.352 0 year 0.283 0.280 -0.257 0.279 0.841 0.273 0 depth -0.665 0.458 -1.671 -0.625 0.123 -0.539 0 Random effects:	
Name Model site IID model	

i SPDE2 model

Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18600.605 18379.205 1254.381 13170.468 67176.94 342 1.578 Range for i 4.677 104.762 280.818 7.044 40.527 599.61 Stdev for i 0.216 0.191 0.020 0.164 0.72 0.058 GroupRho for i 0.848 0.064 0.692 0.860 0.94 0.881

1

No significant trends were observed in the cover of orange solitary corals. This is an extremely small morphospecies, with point scoring often missing individuals. Thus, there is likely to be larger sampling variation, making any trends harder to detect. No overall trend for depth was found for this morphospecies.

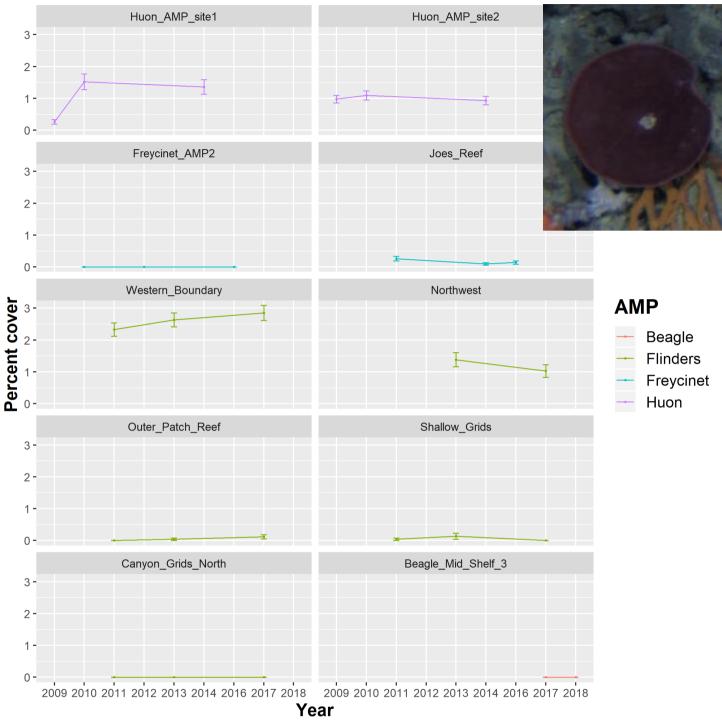


Figure 2.4.11 Site level trends in the raw data for Cup Red Smooth sponges.

2.4.11.1 Model-based estimates of trend

All Marine Parks

mean sd 0.025quant 0.5quant 0.975quant mode kld	
intercept -8.170 0.747 -9.642 -8.168 -6.711 -8.164 0 year 0.047 0.101 -0.151 0.047 0.243 0.047 0	
depth -3.259 0.324 -3.913 -3.253 -2.639 -3.241 0	
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975quant mode Precision for AMP 0.792 1.007 0.064 0.489 3.389 0.170	
Range for i 98.618 24.947 59.430 95.262 156.897 88.852	
Stdev for i 1.051 0.095 0.883 1.045 1.255 1.029	
GroupRho for i 0.882 0.039 0.791 0.887 0.943 0.896	
Huon Marine Park	
Fixed effects:	
mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -5.208 0.203 -5.610 -5.207 -4.813 -5.205 0	
year 0.146 0.106 -0.062 0.146 0.353 0.147 0 depth -0.994 0.173 -1.340 -0.992 -0.662 -0.987 0	
Random effects: Name Model site IID model i SPDE2 model	
Name Model site IID model i SPDE2 model Model hyperparameters:	
Name Model site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode	
Name Model site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 19145.426 18930.717 1303.927 13554.494 69392.190 355	,
Name Model site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 19145.426 18930.717 1303.927 13554.494 69392.190 355 3.768 Range for i 140.000 67.339 51.630 126.086 309.315 10	
Name Model site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 19145.426 18930.717 1303.927 13554.494 69392.190 355 3.768 Range for i 140.000 67.339 51.630 126.086 309.315 10 2.451 Stdev for i 0.809 0.141 0.561 0.800 1.112	
Name Model site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 19145.426 18930.717 1303.927 13554.494 69392.190 355 3.768 Range for i 140.000 67.339 51.630 126.086 309.315 10 2.451	

Freycinet Marine Park

Fixed effe	ects:						
			0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.463	0.501			-7.556		0
year	-0.163	0.299	-0.753	-0.162	0.422	-0.160	0
depth	-1.467	0.471	-2.452	-1.445	-0.600	-1.403	0
Random eft Name site I		e]					

i SPDE2 model

Model hyperparamet	ers:					
	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site	18695 837	18513 802	1278 623	13228.579	67337.848	350
2.75	100551057	105151002		192201979		550
Range for i 7 71	106.670	104.093	6.659	75.897	379.870	1
Stdev for i 1.03	1.124	0.302	0.629	1.092	1.806	
GroupRho for i 0.88	0.849	0.063	0.697	0.859	0.939	

Flinders Marine Park

Fixed effects: mean intercept -7.701 0. year 0.021 0. depth -4.192 0.	.080 -0.13	6 -7.690 7 0.021	-6.778 0.178	-7.668 0
Random effects: Name Model site IID model i SPDE2 model				
Model hyperparamete	ers:			
	mean sd 4.187 4.162 34.029 7.996 0.995 0.100 0.784 0.084	0.025quant 0.481 21.060 0.810 0.584	33.104	.975quant mode 15.14 1.312 52.26 31.332 1.20 0.985 0.91 0.823

No significant linear trends in the cover of the cup red smooth morphospecies were detected in any of the marine parks over the survey period, indicating this is a relatively stable morphospecies. Also, no significant relationship with depth was found.

2.4.12 Cup Yellow

Cup Yellow

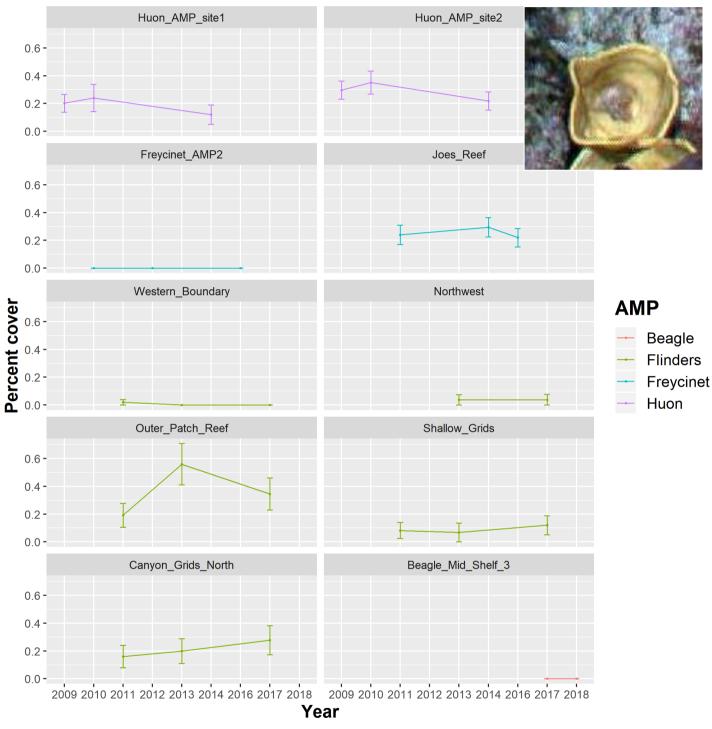
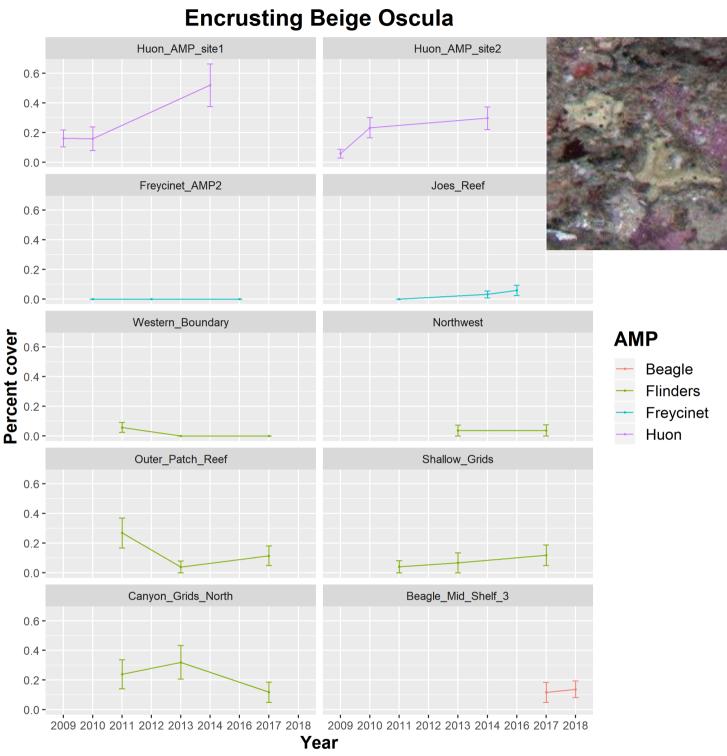


Figure 2.4.12 Site level trends in the raw data for Cup Yellow sponges.

2.4.12.1 Model-based estimates of trend All Marine Parks

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -7.572 0.324 -8.214 -7.570 -6.941 -7.566 0 year 0.150 -0.218 -0.594 -0.219 -0.220 0.190 0 depth -0.226 0.248 -0.718 -0.224 0.255 -0.220 0 Random effects: Name Model AMP IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for AMP 8456.966 1781607418062804.000 392.307 6801.809 24778.918 993.606 326.045 779.789 Range for i 770.980 226.658 1178.992 812.759 Stdev for i 1.343 0.142 1.153 1.311 1.697 1.212 GroupRho for i 0.935 0.013 0.914 0.933 0.962 0.927 Huon Marine Park Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld -6.135 -6.468 intercept -6.479 0.180 -6.843 -6.475 0 -0.499 -0.167 0.164 -0.164 year 0.144 -0.156 0 0.016 0.147 depth -0.279 0.018 0.299 0.022 0 Random effects: Name Model site IID model i SPDE2 model Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 19299.589 18977.217 1297.220 13701.011 69547.151 353 2.309 67.766 9.967 46.460 Range for i 71.632 254.848 2 4.154 Stdev for i 0.821 0.213 0.462 0.804 1.291 0.770 GroupRho for i 0.856 0.060 0.710 0.866 0.942 0.886


Freycinet Marine Park

-turd affects

F1Xed effects:								
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d	
intercept	-7.537	0.323	-8.223	-7.519	-6.954	-7.481	0	
year	-0.036			-0.037	0.320	-0.040	0	
depth	-1.581	0.278	-2.161	-1.569	-1.069	-1.545	0	

Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site			-	14871.793	70810.844	536
5.266 Range for i	42.605	46.886	6.402	28.577	163.910	1
5.004 Stdev for i	0.242	0.173	0.023	0.203	0.656	
0.070 GroupRho for i 0.881	0.849	0.064	0.692	0.860	0.940	
Flinders Mar	ine Park					
Fixed effects: mean intercept -7.277 0. year 0.040 0. depth 0.003 0.	656 -8 271 -0	.571 -7. .494 0.	040 0.	uant mode 996 -7.271 569 0.042 543 0.015	2 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0 Squant	0 975quant	
mode Precision for site				•	67303.178	347
2.419 Range for i 0.052	3074.277	5715.064	0.341	452.304	19864.812	
Stdev for i 0.824	0.937	0.276	0.514	0.898	1.586	
GroupRho for i 0.888	0.861	0.056	0.726	0.870	0.942	

No significant linear trends in the cover of the cup yellow morphospecies were detected in any of the marine parks over the survey period. Also, no significant relationship with depth was found.

Encrusting Beige Oscula 2.4.13

Figure 2.4.13 Site level trends in the raw data for Encrusting Beige Oscula sponges.

2.4.13.1 Model-based estimates of trend

All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld								
intercept			-8.26	•		-7.446	0	
•	0.063		-0.32	0.063	0.445	0.064	0	
depth	0.302	0.198	-0.09	0.303	0.687	0.305	0	
Random effects: Name Model AMP IID model i SPDE2 model								
Model hyperparameters:								
		n	nean	sd 0.02	25quant 0.5d	quant 0	.975quant	
Precision	for AM	P 820.	930 471248	0.285	0.314 9	9.815	2777.112	

	mean	sd	0.025quant	0.5quant	0.975quant	mode
Precision for AMP	820.930	4712480.285	0.314	9.815	2777.112	0.628
Range for i	3608.943	5791.033	489.686	1965.814	16959.607	948.586
Stdev for i	1.123	0.430	0.599	1.018	2.235	0.836
GroupRho for i	0.855	0.053	0.734	0.861	0.937	0.875

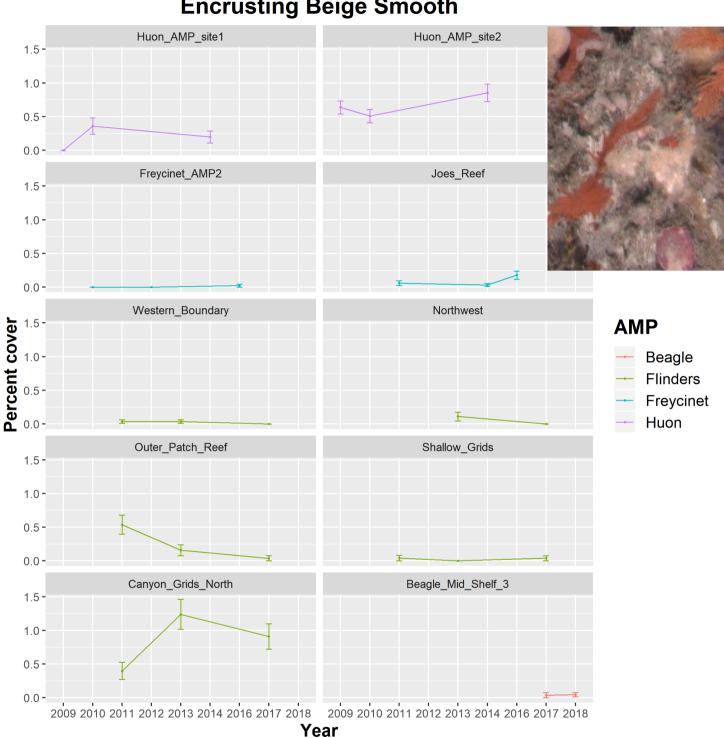
Huon Marine Park

Fixed effects: mean intercept -6.208 year 0.434 depth -0.165	0.140 -6 0.130 (5.494 -6. 0.181 0 .	.434 0.	uant mode .943 -6.196 <mark>.689 0.434</mark> .113 -0.156	0	
depth -0.165	0.140 -0	J.401 -U.	102 0.	.113 -0.130	0	
Random effects: Name Model site IID mode i SPDE2 model	1					
Model hyperparame	ters:					
	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site	18607 595	18360 587	1259 /17	13186.713	67173.100	3/13
8.962	10007.555	10300.307	1233.417	13100.713	0/1/5.100	JTJ
Range for i	36.537	41.755	4.780	24.051	144.400	1
1.790 Stdev for i	0.198	0.172	0.022	0.152	0.651	
0.063	0.190	0.172	0.022	0.152	0.051	
GroupRho for i 0.881	0.849	0.064	0.692	0.860	0.940	

Freycinet Marine Park

Fixed effe intercept year depth	mean -9.680 0.824	0.793	-11.429	-9.607 0.782	2.089	-9.452 0.694	0 0
Random eff Name site J i SPDE2	Model ID mode	el					

Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 19374.876 18956.658 1444.871 13839.947 69231.161 403 9.080 Range for i 63.048 107.901 6.488 32.809 305.422 1 4.252 Stdev for i 0.217 0.196 0.017 0.162 0.731 0.048 GroupRho for i 0.849 0.064 0.692 0.860 0.940 0.881


Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld intercept -7.329 0.199 -7.743 -7.321 -6.961 -7.306 0 year 0.084 -0.230 0.874 0.624 -0.242 0.172 -0.590 -0.238 0 depth 0.624 0.128 0.372 0.624 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18590.452 18355.378 1254.280 13168.691 67148.89 342 1.649 Range for i 2.050 40.122 50.801 5.110 24.943 167.96 1 Stdev for i 0.287 0.281 0.027 0.205 1.04 0.076 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.881

Beagle Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -6.779 0.346 -7.516 -6.758 -6.157 -6.716 Ω -0.113 0.362 -0.797-0.1220.624 -0.141 0 year -0.435 0.300 -0.442 depth -1.0070.173 -0.454 0 Random effects: Name Mode] site IID model i SPDE2 model Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 18522.482 18241.197 1262.064 13142.652 66817.97 345 1.044 Range for i 82.820 119.880 19.823 48.417 360.55 2 3.399 0.094 Stdev for i 0.166 0.022 0.154 0.35 0.078 GroupRho for i 0.848 0.064 0.692 0.860 0.94 0.881

No overall significant trend was found for encrusting beige oscula sponges over the survey period. A positive trend equating to a 54% increase in the odds of presence over the survey period was found in Huon Marine Park. No significant association was found with depth.

2.4.14 Encrusting Beige Smooth Encrusting Beige Smooth

Figure 2.4.14 Site level trends in the raw data for Encrusting Beige Smooth sponges.

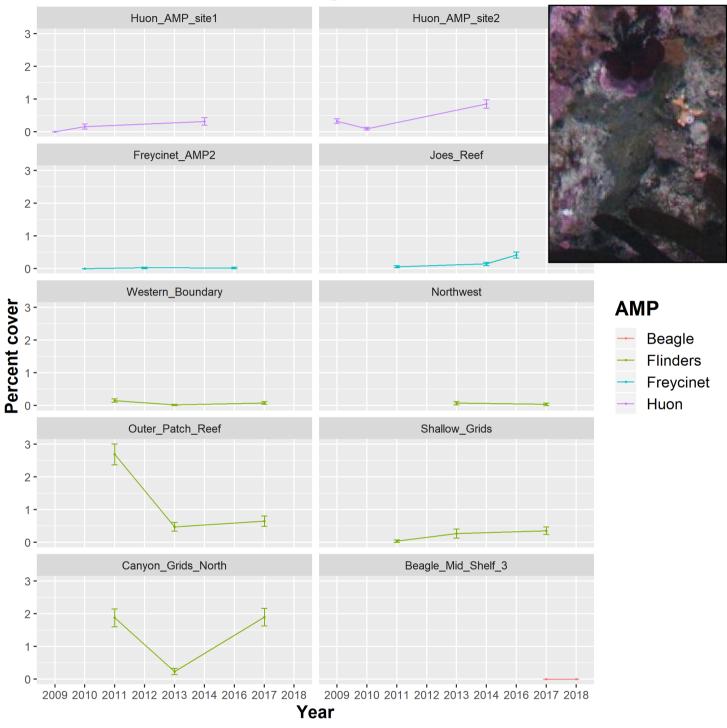
2.4.14.1 Model-based estimates of trend

All Marine Parks

Fixed effects:
meansd0.025quant0.5quant0.975quantmodekldintercept-8.1700.304-8.774-8.167-7.580-8.1620year-0.1370.210-0.553-0.1360.273-0.1340depth0.3870.283-0.1100.3870.8830.3870
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for AMP 13164.5233531.2857488.11012741.65721255.9211959.169Range for i350.23774.806227.576341.561522.57324.645Stdev for i1.6850.2561.2351.6682.241.634GroupRho for i0.8610.0440.7580.8670.930.878
Huon Marine Park
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -6.099 0.383 -6.853 -6.099 -5.350 -6.097 0 year 0.201 0.113 -0.022 0.201 0.420 0.203 0 depth -0.583 0.157 -0.903 -0.579 -0.285 -0.571 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode
meansd0.025quant0.975quantmodePrecision for site10.51822.4990.4214.52758.0271.031Range for i27.28812.37810.31924.96057.86920.742Stdev for i0.9340.2010.6000.9131.3880.873GroupRho for i0.8540.0610.7070.8630.9440.883
Freycinet Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -8.499 0.391 -9.337 -8.473 -7.801 -8.421 0
intercept -8.499 0.391 -9.337 -8.473 -7.801 -8.421 0 year 0.630 0.329 0.024 0.615 1.318 0.585 0 depth -0.769 0.338 -1.480 -0.752 -0.150 -0.718 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant
mode

Precision for site	e 18581.245	18545.090	1279.799	13094.355	67556.268	350
1.171 Range for i	39.585	35.070	9.053	29.203	131.601	1
8.292 Stdev for i	0.861	0.425	0.230	0.802	1.840	
0.616 GroupRho for i 0.883	0.852	0.062	0.702	0.862	0.941	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -7.701 0.207 -8.125 -7.695 -7.311 -7.684 0 0.145 -0.135 1.438 1.139 year -0.139 0.146 -0.429 -0.137 0 1.142 0.149 depth 0.853 1.141 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: mean sd 0.025guant 0.5guant 0.975guant mode Precision for site 18007.770 18103.961 1228.942 12641.207 65863.692 337 4.26 Range for i 69.620 97.170 12.158 41.097 302.323 2 1.34 0.212 1.295 Stdev for i 1.298 0.898 1.726 1.30 0.892 GroupRho for i 0.738 0.117 0.440 0.764 0.81


Beagle Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld intercept -7.880 0.568 -9.121 -7.833 -6.894 -7.733 0 year -0.165 0.574 -1.232 -0.187 1.026 -0.232 0 0.409 -0.568 -0.539 0.468 -1.429-0.5480 depth Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 18534.065 18326.635 1263.055 13121.760 67002.97 344 9.435 Range for i 33.596 65.146 112.998 6.582 319.59 1 4.442 Stdev for i 0.277 0.285 0.017 0.191 1.04 0.044 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.881

No overall significant trend was found for encrusting beige smooth sponges over the survey period. A positive trend equating to an 88% increase in the odds of presence over the survey period was found in Huon Marine Park. No significant association was found with depth.

2.4.15 Encrusting Black

Encrusting Black

Figure 2.4.15 Site level trends in the raw data for Encrusting Black sponges.

2.4.15.1 Model-based estimates of trend All Marine Parks

Fixed effects:

GroupRho for i

	mean	sd	0.025	quant	0.5q	uant	0.9750	quant	mode	e kld	
intercept -7	.945	0.327	-	8.594	-7	.943	- 7	7.308	-7.939	9 0	
year 0	.043	0.221	-	0.391	0	.043	(0.475	0.044	1 O	
depth 0	.197	0.273	-	0.339	0	.197	(0.732	0.198	3 0	
Random effec Name Mo AMP IID i SPDE2 m	del model										
Model hyperp	arame	ters:									
			mean		sd	0.02	Squant	0.5q	uant 0).975q	uant
Precision fo	r AMP	18642	2.296	18361	.189	122	23.257	13211	.222	67238	.060
Range for i		371	L.406	90	.531	22	23.310	361	.472	577	.520
Stdev for i		1	L.845	0	.237		1.395	1	.843	2	.320

0.058

0.691

0.845

0.915

mode 3321.335 342.644 1.852

0.866

Huon Marine Park

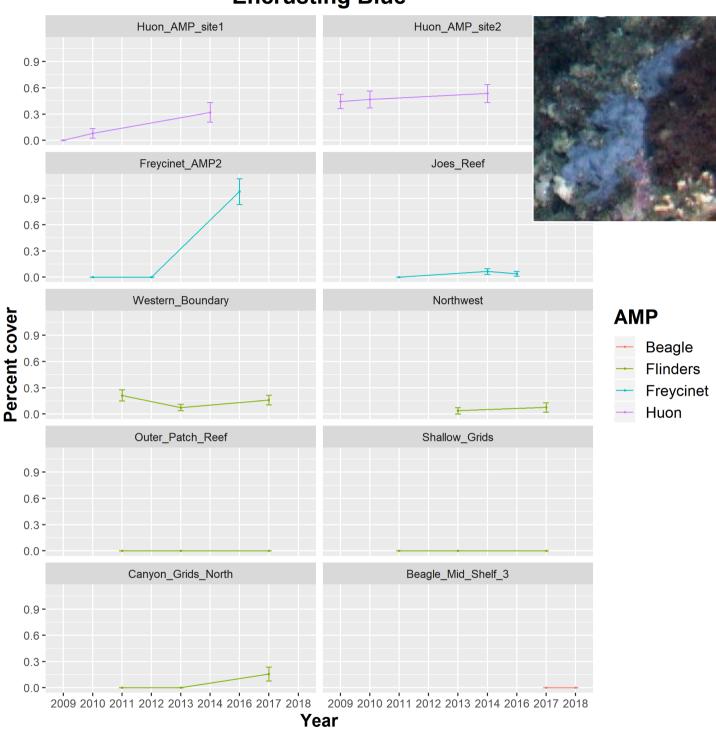
0.834

Fixed effects: mean	sd 0.025c	uant 0.5qua	ant 0.975au	iant mode	kld	
intercept -6.466 0		.797 -6.4		154 -6.456	0	
				091 0.820		
depth -0.035 0	.165 -0	.368 -0.0)33 0.	282 -0.027	0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamet				0.5	0.075	
mode	mean	sa (0.025quant	0.5quant	0.975quant	
Precision for site	19345.676	19801.633	1349.358	13451.837	71445.256	368
0.749	100101010	100011000	10101000	10.01.000	121101200	500
Range for i	19.865	8.868	8.636	17.864	42.488	1
4.697 Stdev for i	1.314	0.268	0.846	1.296	1.894	
1.265	1.514	0.200	0.040	1.290	1.094	
GroupRho for i 0.878	0.843	0.067	0.680	0.855	0.938	

Freycinet Marine Park

Fixed effects:						
mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept -7.874		-8.602	-7.856	-7.244	-7.820	0
	0.254	0.263	0.727	1.260	0.708	0
depth -1.133	0.294	-1.745	-1.121	-0.589	-1.096	0
Random effects: Name Model site IID mod i SPDE2 model	el					

Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 18736.677 18702.943 1319.381 13212.831 68452.395 362 0.448 Range for i 69.906 49.149 16.110 57.283 198.502 3 8.124 Stdev for i 0.699 0.241 0.303 0.677 1.234 0.623 GroupRho for i 0.846 0.065 0.688 0.857 0.938 0.878


Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld -6.908 -6.333 -6.904 intercept -6.910 0.297 -7.500 0 year -0.029 0.189 -0.402 -0.029 0.341 -0.028 0 depth 0.845 0.287 0.281 0.846 1.409 0.846 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 16817.695 15774.138 1184.237 12263.062 59037.192 325 5.717 179.225 55.698 93.619 171.386 310.312 Range for i 15 6.723 Stdev for i 1.510 0.201 1.152 1.497 1.941 1.473 0.852 0.706 0.091 0.497 0.717 GroupRho for i 0.739

Beagle Marine Park

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.858 1.001 year 0.112 1.071 -8.171 -9.532 2.385 -0.072 -12.087 -9.755 0 -1.8230.051 0 0 depth -0.010 1.072 -1.814-0.1202.373 -0.357 Random effects: Mode] Name site IID model i SPDE2 model Model hyperparameters: sd 0.025guant 0.5guant 0.975guant mean mode Precision for site 18772.756 18502.634 1293.452 13319.105 67630.36 354 4.146 Range for i 41.540 52.774 4.771 25.770 174.91 1 1.749 0.282 0.282 0.026 0.199 1.02 Stdev for i 0.074 0.848 0.064 0.691 0.860 0.94 GroupRho for i 0.882

A significant positive overall trend was found for encrusting black sponges, equating to a 4% increase in odds of presence over the survey period. Positive linear trends were also detected in Huon (128% increase in odds) and Freycinet Marine Parks (109% increase in odds). No significant trend was found for depth.

2.4.16 Encrusting Blue Encrusting Blue

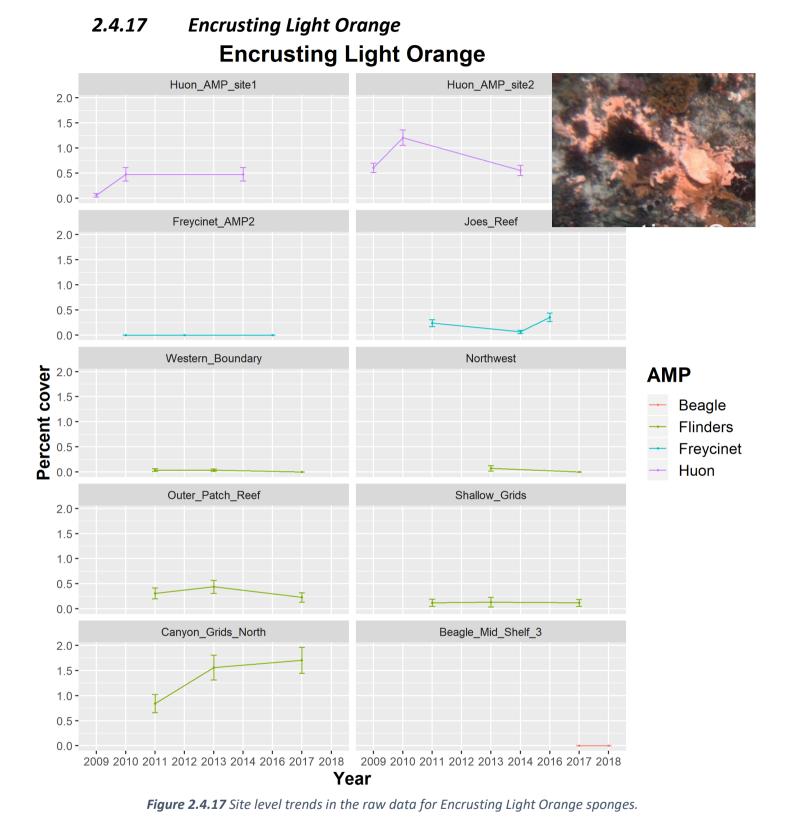
Figure 2.4.16 Site level trends in the raw data for Encrusting Blue sponges.

2.4.16.1 Model-based estimates of trend All Marine Parks

Fixed effects:meansd0.025quant0.5quant0.975quantmodekldintercept-9.1010.470-10.038-9.097-8.191-9.0870year0.5810.314-0.0310.5791.2010.5760depth-0.0810.371-0.819-0.0780.636-0.0710
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for AMP21658.76820283.0492171.99915908.66875399.486158.451Range for i722.387260.923341.223679.3941351.52601.100Stdev for i1.9780.3231.4171.9522.691.903GroupRho for i0.8560.0500.7380.8630.930.878
Huon Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -6.242 0.482 -7.190 -6.241 -5.298 -6.239 0 year 0.192 0.116 -0.037 0.193 0.416 0.194 0 depth -0.622 0.159 -0.947 -0.618 -0.322 -0.610 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for site3.4594.6990.1902.02415.6140.497Range for i28.47622.4617.60421.93987.84214.577Stdev for i0.6970.2560.2810.6731.2630.610GroupRho for i0.8480.0650.6900.8600.9390.881
Frevcinet Marine Park

Freycinet Marine Park

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.169 0.466 -10.179 -9.134 -8.350 -9.062 0 year 1.913 0.407 1.201 1.881 2.799 1.813 0 depth 0.892 0.247 0.426 0.885 1.397 0.872 0


Random effects: Name Model site IID model i SPDE2 model

Model hyperparameters:

	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for : 2.714	site 21063.876	22101.957	1540.546	14469.913	79397.924	422
Range for i	14.464	4.726	7.480	13.697	25.799	1
2.303 Stdev for i 1.744	1.818	0.343	1.224	1.792	2.569	
GroupRho for i 0.876	0.842	0.067	0.678	0.854	0.938	

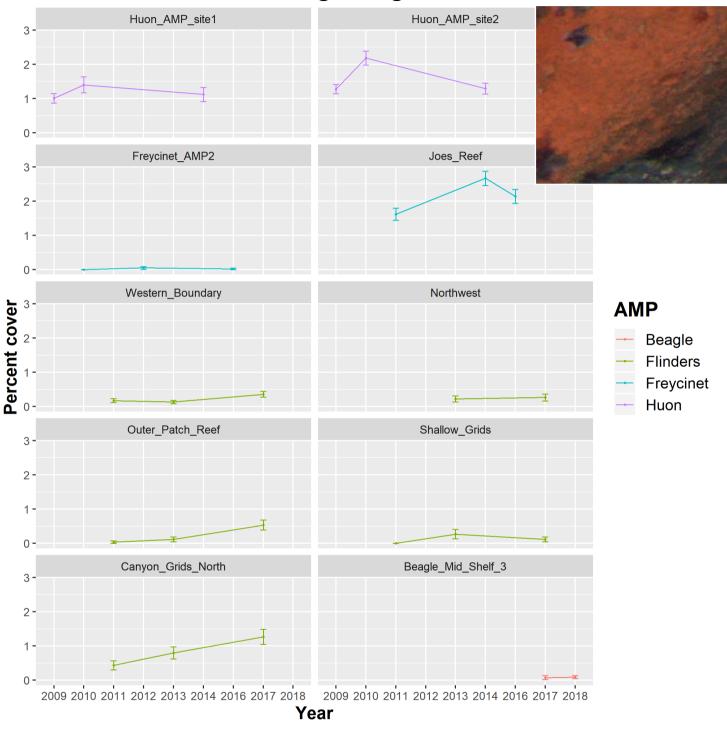
Fixed effects: mean intercept -9.081 0. year 0.236 0. depth -0.383 0.	.274 -9 .220 -0	9.641 -9. 0.195 0.	235 0	uant mod 567 -9.05 669 0.23 163 -0.35	35 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 9.295	19863.224	19621.103	1447.705	14100.98	71835.664	400
Range for i	33.969	13.856	15.909	30.95	69.100	2
6.023 Stdev for i	1.931	0.335	1.346	1.91	2.658	
1.863 GroupRho for i 0.864	0.827	0.073	0.651	0.84	0.932	

No significant overall linear trend was detected for encrusting blue sponges. A significant positive linear trend was found in Freycinet Marine Park equating to a 577% increase in odds per year over the survey period. This appears to have been largely driven by a large increase seen at Freycinet Marine Park site 2 in the last year surveyed.

2.4.17.1 Model-based estimates of trend All Marine Parks

0.297 - 0.187 -	-8.306 -7 -0.624 -6	7.713 -7 0.252 0	7.138 -7.70).112 -0.25	90	
eters: mean	sd	0.025quant	0.5quant	0.975quant	mod
21611.877	13780.879	4724.634	18544.050	57383.687	12421.45
434.176	127.759	232.346	418.001	729.360	387.39
1.473	0.186	1.126	1.467	1.857	1.46
0.904	0.028	0.841	0.906	0.951	0.91
rine Park					
sd 0.02 0.342 0.135 0.181	-6.611 -0.461	-5.938 -0.192	-5.271 -5	.936 0 .190 0	
el					
eters: mean	sd 0	025quant () Squant ()	975quant	mode
te 31.681	103.439	0.566 9.217 0.453 0.688	9.569 96.535 0.783 0.857	199.927 469.019 2 1.264 0.938	1.214
	0.297 0.187 0.240 eters: mean 21611.877 434.176 1.473 0.904 rine Park sd 0.02 0.342 0.135 0.181 el eters: mean te 31.681 133.636 0.801	0.297 -8.306 -7 0.187 -0.624 -0 0.240 -0.302 0 eters: mean sd 21611.877 13780.879 434.176 127.759 1.473 0.186 0.904 0.028 rine Park sd 0.025quant 0. 0.342 -6.611 0.135 -0.461 0.135 -0.461 0.181 -1.007 el eters: mean sd 0 te 31.681 103.439 133.636 127.600 0.801 0.208	0.297 -8.306 -7.713 -7 0.187 -0.624 -0.252 6 0.240 -0.302 0.169 6 eters: mean sd 0.025quant 2 21611.877 13780.879 4724.634 434.176 127.759 232.346 1.473 0.186 1.126 0.904 0.028 0.841 rine Park sd 0.025quant 0.5quant 0.97 0.342 -6.611 -5.938 0.135 -0.461 -0.192 0.181 -1.007 -0.643 el eters: mean sd 0.025quant 0 133.636 127.600 9.217 0.801 0.208 0.453	0.297 -8.306 -7.713 -7.138 -7.70 0.187 -0.624 -0.252 0.112 -0.25 0.240 -0.302 0.169 0.639 0.17 eters: mean sd 0.025quant 0.5quant 2 21611.877 13780.879 4724.634 18544.050 434.176 127.759 232.346 418.001 1.473 0.186 1.126 1.467 0.904 0.028 0.841 0.906 <i>rine Park</i> sd 0.025quant 0.5quant 0.975quant r 0.342 -6.611 -5.938 -5.271 -5 0.135 -0.461 -0.192 0.070 -0 0.181 -1.007 -0.643 -0.298 -0 el eters: mean sd 0.025quant 0.5quant 0.5quant 0 t 31.681 103.439 0.566 9.569 133.636 127.600 9.217 96.535 0.801 0.208 0.453 0.783	0.187 -0.624 -0.252 0.112 -0.250 0 0.240 -0.302 0.169 0.639 0.170 0 eters: mean sd 0.025quant 0.5quant 0.975quant 2 21611.877 13780.879 4724.634 18544.050 57383.687 434.176 127.759 232.346 418.001 729.360 1.473 0.186 1.126 1.467 1.857 0.904 0.028 0.841 0.906 0.951 eters: mean sd 0.025quant 0.5quant 0.975quant mode k1d 0.342 -6.611 -5.938 -5.271 -5.936 0 0.135 -0.461 -0.192 0.070 -0.190 0 0.181 -1.007 -0.643 -0.298 -0.637 0 el eters: mean sd 0.025quant 0.5quant 0.5quant 0.975quant te 31.681 103.439 0.566 9.569 199.927 133.636 127.600 9.217 96.535 469.019 2 0.801 0.208 0.453 0.783 1.264

Freycinet Marine Park


Fixed eff	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.327			-8.305			
year .	0.192	0.227	-0.247	0.190	0.644	0.185	0
depth	-1.444	0.341	-2.164	-1.426	-0.822	-1.390	0

Random effects:

Name Model site IID model i SPDE2 model						
Model hyperparamete	ers:					
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 6.673	19171.26	19687.108	1352.609	13317.079	71097.196	372
Range for i	16.54	6.299	7.600	15.411	31.954	1
3.418 Stdev for i 1.326	1.38	0.297	0.871	1.364	2.030	
GroupRho for i 0.875	0.84	0.068	0.674	0.852	0.937	

Fixed effects: mean intercept -7.081 0.2 year -0.009 0.2 depth 1.068 0.2	239 -7 L38 -0	7.562 -7. .281 -0.	008 0.	uant mode .624 -7.068 .261 -0.007 .478 1.066	' Ö	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparameter	rs: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 1	18700 122	18307 168	1265 696	13284.055	67368.94	215
6.332	10709.422	10397.100	1203.090	13204.033	07500.94	747
Range for i	148.330	60.446	63.749	137.287	297.25	11
7.739 Stdev for i	0.966	0.180	0.651	0.953	1.36	
0.931 GroupRho for i 0.869	0.841	0.061	0.694	0.850	0.93	

No overall or marine park level significant linear trends were detected for the encrusting light orange sponge morphotype. Also, no significant depth trend was detected.

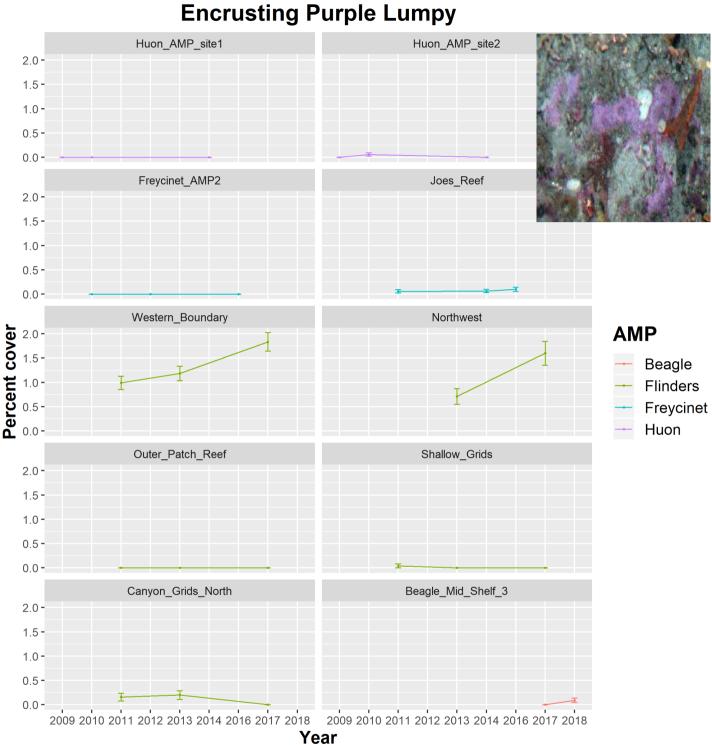
Encrusting Orange

Figure 2.4.18 Site level trends in the raw data for Encrusting Orange sponges.

2.4.18.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quan	t mode kld
year -0.163 0.144 -0.447 -0.163 0.12	3 -6.481 0 0 -0.162 0 6 -0.367 0
depth -0.368 0.201 -0.764 -0.368 0.02	0 -0.307 0
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant 0.	5quant 0.975quant mode
	15.279 63611.415 3157.880
0	78.289 584.452 355.017
Stdev for i 1.468 0.180 1.19	1.440 1.888 1.367
GroupRho for i 0.878 0.037 0.79	0.884 0.935 0.895
Huon Marine Park	
Fixed effects:	ant wada kid
year -0.099 0.093 -0.283 -0.099 0.	ant mode kld 342 -4.630 0 082 -0.098 0 039 -0.170 0
Random effects: Name Model site IID model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant	0.5quant 0.975quant
mode Precision for site 19189.530 19151.534 1326.559 4.812	13524.894 70280.676 363
Range for i 104.995 52.210 36.979	94.132 236.281 7
5.524 Stdev for i 0.737 0.126 0.509 0.723	0.731 1.004
GroupRho for i 0.829 0.076 0.644 0.868	0.842 0.936
Freycinet Marine Park	

Fixed eff	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-6.042				-5.645		
year	0.141	0.128	-0.110	0.141	0.393	0.141	0
depth	-1.916	0.207	-2.335	-1.912	-1.524	-1.903	0


Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete	ers:					
	mean	sd	0.025quant	0.5quant	0.975quant	m
ode Precision for site 228	18889.64	18637.257	1337.310	13407.23	68186.505	3690.
Range for i	53.85	22.716	21.922	49.80	109.374	42.
403 Stdev for i 994	1.01	0.124	0.783	1.00	1.270	0.
GroupRho for i 780	0.75	0.084	0.560	0.76	0.884	0.

Fixed effects: mean intercept -6.398 0.	sd 0.025qua	660 -6.39	96 - 6.1	ant mode 148 -6.392 142 0.444	0	
year 0.446 0. depth 0.454 0.	112 0.2	253 0.4 4 233 0.45			0 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete	rs: mean	sd 0.	.025quant	0.5quant	0.975quant	
mode Precision for site	19432.447 18		1521.888 1		•	426
6.044 Range for i	39.859	18.274	15.582	36.153	85.634	2
9.865 Stdev for i	0.848	0.169	0.549	0.838	1.209	
0.823 GroupRho for i 0.888	0.861	0.056	0.727	0.870	0.942	
Beagle Marin	e Park					
Fixed effects: mean intercept -7.342 0. year 0.369 0. depth 0.859 0.	420 -0.4	415 -7.29 413 0.39	99 -6.4 54 1.2	199 -7.209 237 0.324	0 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamete			0.25	0.5	0.075	
mode	mean		.025quant			
Precision for site	18638.256 18	8381.789	1266.239 1	13213.525	67244.382	346

Precision for	site 18638.256	18381.789	1266.239	13213.525	67244.382	346	
Range for i	49.080	69.494	5.693	28.594	218.737	1	
Stdev for i 0.057	0.225	0.206	0.020	0.167	0.765		

GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.881

No significant overall trend was found for encrusting orange sponges, but a significant positive trend was found in Flinders Marine Park equating to a 56% increase in odds per year. No significant overall depth association was found.

Encrusting Purple Lumpy 2.4.19

Figure 2.4.19 Site level trends in the raw data for Encrusting Purple Lumpy sponges.

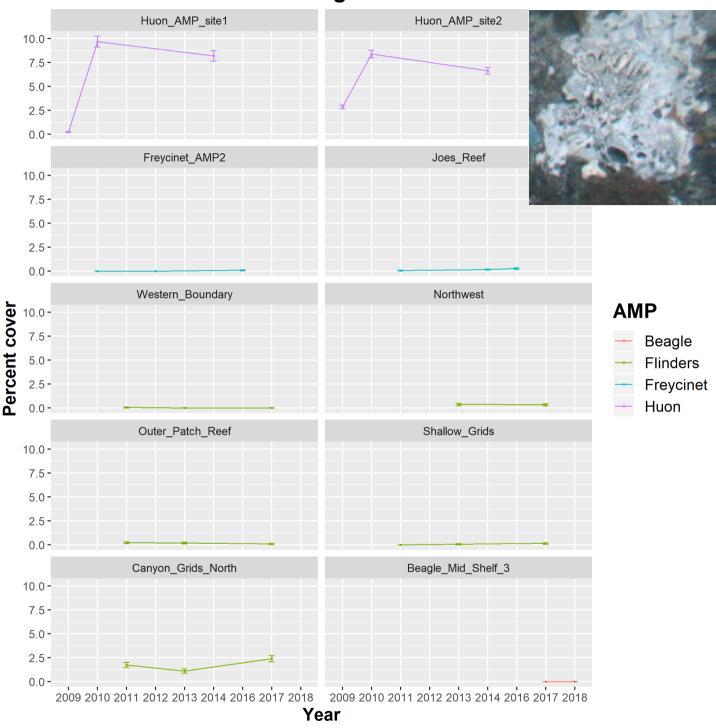
2.4.19.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.504 0.496 -10.483 -9.503 -8.537 -9.499 0 year 0.128 0.157 -0.181 0.128 0.436 0.128 0 depth -1.268 0.223 -1.721 -1.263 -0.843 -1.253 0	
Random effects: Name Model AMP IID model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975quant mode	
Precision for AMP 1.257 0.730 0.289 1.117 3.061 0.774 Range for i 62.014 20.856 35.583 57.185 115.007 48.347	
Stdev for i $1.891 \ 0.179 \ 1.530 \ 1.898 \ 2.225 \ 1.933$	
GroupRho for i 0.849 0.062 0.693 0.861 0.933 0.883	
Huon Marine Park	
Fixed effects:	
mean sd 0.025quant 0.5quant 0.975quant mode kld	
intercept -9.209 0.566 -10.448 -9.161 -8.231 -9.059 0 year -0.135 0.581 -1.402 -0.087 0.876 0.012 0 depth 0.234 0.452 -0.683 0.245 1.093 0.265 0	
Random effects: Name Model site IID model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant	
mode	
Precision for site 18628.348 18367.123 1262.112 13207.338 67211.725 34 7.535	4
Range for i 68.636 127.356 6.643 33.946 345.279	1
4.371 Stdev for i 0.244 0.238 0.017 0.174 0.876	
0.048 GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.882	
Frevcinet Marine Park	

Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-10.040	0.859	-11.912	-9.971	-8.545	-9.826	0
year	0.093	0.347	-0.565	0.085	0.797	0.070	0
depth	-2.301	0.676	-3.748	-2.258	-1.091	-2.169	0
Random eff Name	⁻ ects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 4.716	19024.719	18688.951	1340.969	13533.309	68361.543	370
Range for i 4.703	28.595	22.362	7.256	22.184	87.674	1
Stdev for i 0.663	0.868	0.400	0.265	0.815	1.788	
GroupRho for i 0.878	0.843	0.067	0.679	0.855	0.938	


Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -7.407 0.238 year 0.107 0.140 -6.952 -7.396 0.382 0.108 -7.885 -7.403 0 -0.170 0.107 0 depth -1.473 0.301 -2.083-1.466-0.901 -1.453 0 Random effects: Name Mode] site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18055.724 18175.244 1220.629 12660.368 66018.416 333 1.592 68.717 Range for i 38,760 63.068 129.932 5 23.941 2.885 Stdev for i 1.872 0.177 1.561 1.859 2.256 1.826 GroupRho for i 0.808 0.065 0.657 0.816 0.911 0.833

Beagle Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.333 0.774 year 0.590 0.871 -7.033 -8.075 2.549 0.266 -10.058-8.252 0 0.489 -0.848 0 depth -0.860 0.408-1.702-0.846-0.098 - 0.8190 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18628.823 18370.424 1262.401 13206.659 67214.859 344 8.534 Range for i 60.213 100.776 6.278 31.754 289.509 1 3.838 Stdev for i 0.261 0.254 0.021 0.187 0.937 0.060

GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.882

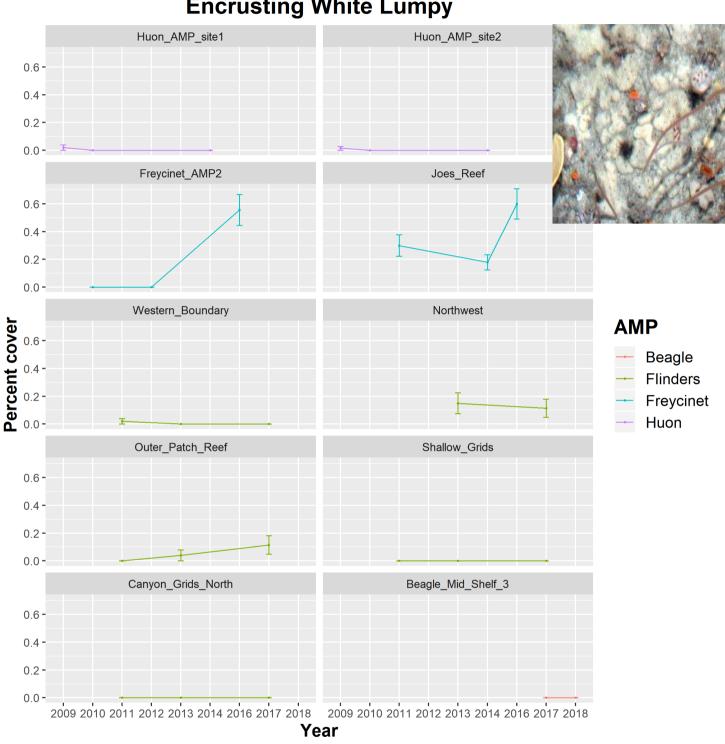
No overall or marine park level significant linear trends were detected for the encrusting light orange sponge morphotype. Also, no significant depth trend was detected.

Encrusting White

Figure 2.4.20 Site level trends in the raw data for Encrusting White sponges.

2.4.20.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean intercept -8.034 0.	sd 0.025quan 519 -9.05	-		mode kld -8.028 0		
year -0.172 0. depth -1.440 0.	293 -0.74	7 -0.172 5 -1.440	0.402 -0.846	-0.172 0 -1.439 0		
Random effects: Name Model AMP IID model i SPDE2 model		5 -1.440	-0.040	-1.455 0		
Model hyperparamete						
Precision for AMP 1 Range for i Stdev for i GroupRho for i	644.901 12 2.569	1.091 138 5.302 43 0.322	1.077 13374 8.727 630 1.998 2	0.838 92 2.547	0.403 3812.5 9.912 602.4 3.259 2.5	
Huon Marin	e Park					
Fixed effects: mean intercept -4.014 0 year 0.243 0 depth -1.465 0	.199 -0.1	355 -4.014	4 -3.1 3 0.6	78 -4.012	<1d 0 0 0	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamet	ers: mean	sd 0.()25quant	0.5quant 0.	975quant	
mode Precision for site			1236.044 1	•	56333.649 33	37
5.739 Range for i 7.853	228.314	54.800	141.146	221.323	355.216	20
Stdev for i 1.516	1.558	0.218	1.172	1.544	2.027	
GroupRho for i 0.831	0.801	0.070	0.635	0.811	0.908	


Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-7.922	0.369	-8.707	-7.901	-7.256	-7.857	0
year	0.793	0.257	0.317	0.782	1.326		0
depth	-1.324	0.287	-1.926	-1.311	-0.798	-1.284	0
Random eft Name	fects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site			•	14775.863	79358.504	454
3.809 Range for i	56.536	85.812	6.565	31.672	260.030	1
4.612 Stdev for i	0.278	0.222	0.027	0.221	0.844	
0.080 GroupRho for i 0.881	0.848	0.065	0.690	0.859	0.940	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -6.689 0.384 -7.445 -6.688 -5.936 -6.687 0 -0.152 0.257 0.053 0.104 0.053 0.053 0 year depth 0.835 0.269 0.307 0.834 1.363 0.834 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: mode mean sd 0.025quant 0.5quant 0.975quant 1.665 0.328 6.366 Precision for site 1.974 1.515 0.847 67.951 22.457 Range for i 30.939 14.526 27.631 1.290 0.938 0.681 Stdev for i 0.962 0.156 0.955 0.945 GroupRho for i 0.845 0.856 0.065 0.687 0.877

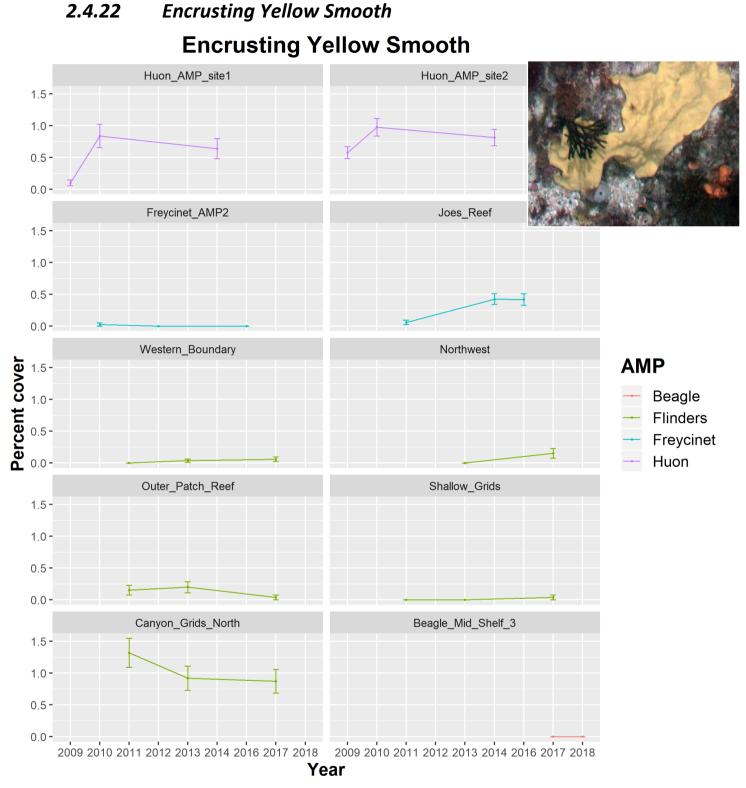
No overall linear trend in the cover of the encrusting white sponge morphotype was found. A positive trend was found for Freycinet Marine Park equating to a 121% increase in the odds per year. Also, a significant negative association was found with depth, indicating a preference for shallower depths for this morphospecies.

2.4.21 Encrusting White Lumpy Encrusting White Lumpy

Figure 2.4.21 Site level trends in the raw data for Encrusting White Lumpy sponges.

2.4.21.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld
intercept -9.989 1.181 -12.324 -9.984 -7.687 -9.973 0
year 0.905 0.198 0.528 0.901 1.304 0.893 0
depth -0.638 0.294 -1.254 -0.624 -0.099 -0.596 0
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for AMP 0.232 0.128 0.073 0.203 0.562 0.156
Range for i 34.600 11.870 17.582 32.509 63.549 28.786
Stdev for i 1.535 0.213 1.154 1.522 1.992 1.498
GroupRho for i 0.796 0.072 0.626 0.807 0.907 0.827
Huon Marine Park
Fixed effects:
meansd0.025quant0.5quant0.975quantmodekldintercept-9.8370.800-11.625-9.751-8.498-9.5630year-0.4770.849-2.380-0.3830.934-0.1740depth0.3470.499-0.6410.3501.3190.3560
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant
mode Precision for site 18625.630 18374.967 1264.288 13202.033 67210.517 345 5.072
Range for i 71.055 135.245 6.734 34.580 362.202 1 4.518
Stdev for i 0.222 0.205 0.018 0.163 0.765
GroupRho for i 0.848 0.064 0.692 0.860 0.940 0.881


Freycinet Marine Park

Fixed effects:							
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-7.441	0.240	-7.932	-7.434	-6.988	-7.420	0
year	1.031	0.206	0.643	1.025	1.452	1.014	0
depth	-0.389	0.196	-0.778	-0.387		-0.383	
Random ef Name	fects: Model						

site IID model i SPDE2 model						
Model hyperparameters:						
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site	20405.331	20467.350	1489.051	14366.855	74834.559	411
1.518 Range for i	29.919	12.974	13.238	27.057	62.810	2
2.462 Stdev for i	1.560	0.229	1.152	1.547	2.051	
1.523	1.300	0.229	1.132	1.347	2.031	
GroupRho for i 0.844	0.807	0.078	0.619	0.819	0.922	
0.017						

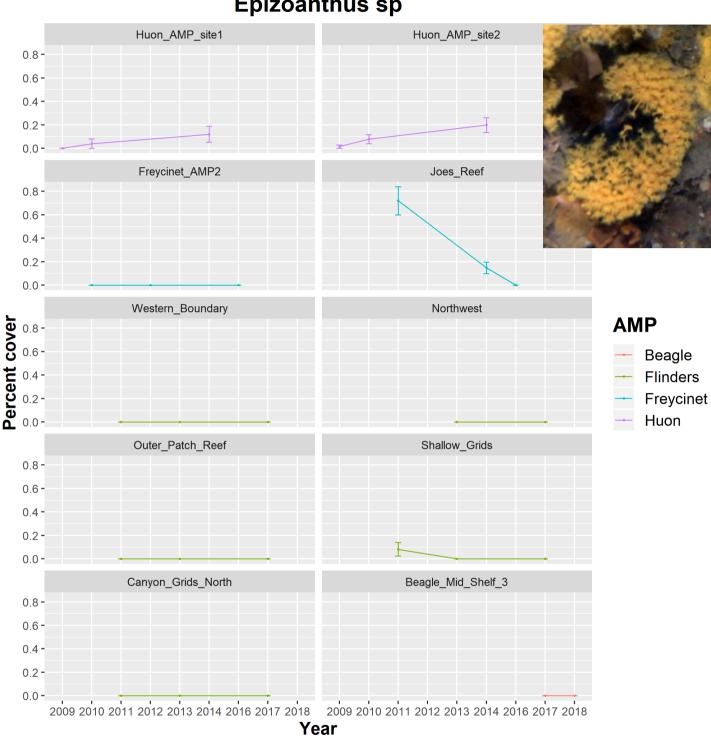
Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.469 0.354 year 0.346 0.282 -7.845 -8.390 0.915 0.331 -9.234 -8.443 0 -0.193 0.341 0 depth -0.671 0.461 -1.683-0.631 0.123 -0.546 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18598.624 18375.900 1258.283 13170.670 67193.24 343 4.971 26.689 159.35 Range for i 40.353 45.744 4.592 1 2.015 Stdev for i 0.358 0.374 0.033 0.248 1.36 0.093 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.881

No overall linear trend in the cover of the encrusting white sponge morphotype was found. A positive trend was found for Freycinet Marine Park equating to a 180% increase in the odds per year. No significant association was found with depth.

Figure 2.4.22 Site level trends in the raw data for Encrusting Yellow Smooth sponges.

2.4.22.1 Model-based estimates of trend All Marine Parks

Fixed effects:				
mean	sd 0.025quant 0	.5quant 0.97	5quant mode kl	ld
intercept -7.947 0.3			-7.237 -7.940	0
year -0.201 0.2	36 -0.666		0.260 -0.198	0
depth -0.044 0.2	59 -0.552	-0.043	0.463 -0.043	0
Random effects: Name Model AMP IID model i SPDE2 model				
Model hyperparameter			t O Fauant O O	Tourset mode
Precision for AMP 21	mean 598.638 21620.2		t 0.5quant 0.97 8 15176.788 787	75quant mode 769.505 3794.253
	630.668 190.6			03.622 548.755
Stdev for i			1 1.658	
GroupRho for i	0.866 0.6	0.75	4 0.873	0.936 0.887
Huon Marine	Park			
Fixed effects:				
mean	sd 0.025quant	0.5quant 0.	975quant mode	
intercept -5.262 0.4 year 0.072 0.1	444 -6.136 183 -0.287	-5.261 0.072	-4.393 -5.259 0.430 0.073	
depth -0.521 0.	184 -0.883	-0.521	-0.160 -0.521	
Random effects: Name Model site IID model i SPDE2 model				
Model hyperparamete	rs:			
mode	mean	sd 0.025q	uant 0.5quant	0.975quant
Precision for site 5.799	18419.025 1785	8.818 1274	.949 13186.637	66118.658 350
Range for i	621.276 42	8.801 141	.311 513.853	1739.001 34
1.592 Stdev for i 0.744	0.835	0.252 0	.436 0.804	1.416
GroupRho for i 0.868	0.833	0.070 0	.663 0.845	0.933


Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-7.248	0.274	-7.823	-7.236	-6.745		0
year	0.532	0.190	0.171	0.528	0.918		0
depth	-1.196	0.241	-1.693	-1.187	-0.749	-1.170	0
depth -1.196 0.241 -1.693 -1.187 -0.749 -1.170 Random effects: Name Model							

site IID model i SPDE2 model						
Model hyperparameters:						
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site	19122.941	18980.042	1333.567	13523.074	69404.907	366
9.871 Range for i	172.206	333.484	9.540	80.783	907.558	2
4.122 Stdev for i	0.511	0.235	0.182	0.470	1.083	
0.388 GroupRho for i 0.876	0.842	0.066	0.681	0.854	0.937	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld intercept -7.848 0.225 -8.309 -0.281 -7.841 -7.424 -7.828 0 0.013 0.149 0.013 0.303 0.015 0 year depth 1.147 0.166 0.824 1.146 1.477 1.143 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18429.201 18232.857 1270.968 13049.394 66705.843 347 8.542 41.045 36.136 2 Range for i 21.398 14.637 95.886 8.4Ğ1 Stdev for i 1.283 0.211 0.903 1.273 1.729 1.257 GroupRho for i 0.827 0.071 0.656 0.839 0.931 0.861

No overall linear trend in the cover of the encrusting yellow smooth morphotype was found. A positive trend was found for Freycinet Marine Park equating to a 70% increase in the odds per year. A significant negative association was found with depth, indicating a preference for shallower depths in those that were surveyed.

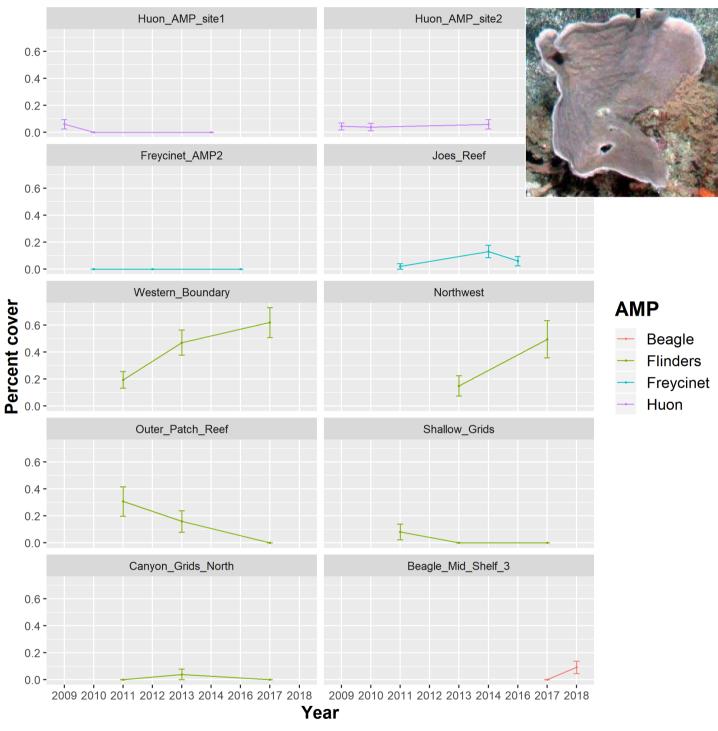
2.4.23 Epizoanthus sp Epizoanthus sp

Figure 2.4.23 Site level trends in the raw data for Epizoanthus sp.

2.4.23.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean intercept -13.249 0. year -0.198 0. depth -1.557 0.	.382 -0.968	0.5quant 0 -13.240 -0.192 -1.628	-11.74 0.53	7 -13.222 -0.178	0 0	
Random effects: Name Model AMP IID model i SPDE2 model						
Model hyperparameter	`s:					
Stdev for i 2		025quant 0. 0.101 22.790 2.150 0.698	.5quant 0 0.930 50.173 2.961 0.836	9.566 106.218	43.501 2.957	
Huon Marine	Park					
intercept -8.120 0.	287 0.297	-8.104 0.838	-7.1 1.4	ant mode 194 -8.073 124 0.827 310 -1.100	0	
Model hyperparamete			Equant	0 Equant	0.075quant	
_mode	mean			-	0.975quant	251
Precision for site					67623.921	35T
Range for i 8.720	211.816 16	0.911	47.047	168.060	634.825	10
Stdev for i 1.089 GroupRho for i 0.866		0.318 0.074	0.652 0.647	1.148 0.841	1.892 0.933	
F actoria et 1 4 -	unin a Daula					

Freycinet Marine Park


Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-12.927		-15.476				
year	-1.271	0.574	-2.463	-1.248	-0.208	-1.203	0
depth	-2.749	0.940	-4.794	-2.675	-1.108	-2.519	0
Random eff Name	⁻ ects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers:					
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 5.815	18356.069	18284.967	1260.088	12948.507	66613.020	344
Range for i	34.929	11.198	18.346	33.110	61.757	2
9.803 Stdev for i	2.409	0.363	1.775	2.381	3.199	
2.328 GroupRho for i 0.864	0.837	0.059	0.697	0.846	0.927	

Fixed effects: mean intercept -10.311 year -1.012 depth -0.143	0.826 -1 0.848 -	L2.159 -10 -2.895 -0	0.927 (quant mo 3.934 -10.0 0.422 -0.7 0.897 0.0	743 0		
Random effects: Name Model site IID model i SPDE2 model							
Model hyperparamet	ers:						
mode	mean	sd	0.025quant	0.5quant	0.975quant		
Precision for site	18616.242	18368.277	1261.733	13193.719	67196.488	344	
6.559 Range for i 4.716	74.177	144.649	6.816	35.525	381.410	1	
Stdev for i	0.215	0.197	0.017	0.159	0.736		
0.047 GroupRho for i 0.882	0.849	0.064	0.691	0.860	0.940		

No overall trend was detected for epizoanthus sp. However, a positive linear trend equating to a 133% increase in odds per year was found for Huon Marine Park between 2009 and 2014, while a negative trend equating to a 72% decrease in odds was found for Freycinet Marine Park between 2011 and 2016. No significant overall association was found for depth.

2.4.24 Fan Pink

Fan Pink

Figure 2.4.24 Site level trends in the raw data for Fan Pink sponges.

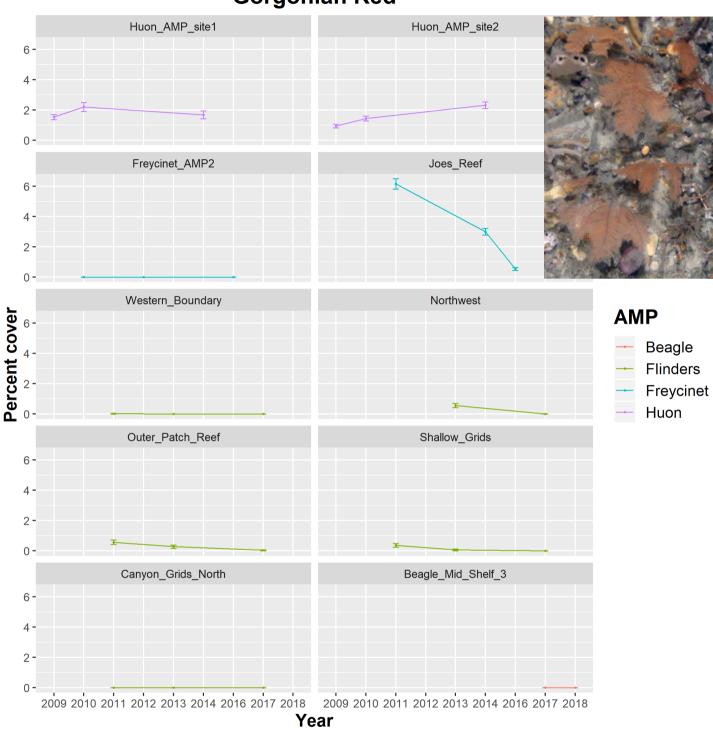
2.4.24.1 Model-based estimates of trend All Marine Parks

Fixed effects:

mean			0.975quant			
intercept -8.697 0					0 <mark>0</mark>	
year 0.255 0 depth -1.482 0					0	
ueptii -1.482 0	.250 -1.9	52 -1.4/0	-1.050	-1.405	0	
Random effects: Name Model AMP IID model i SPDE2 model						
Model hyperparamet	ers:					
	mean	sd 0.02	25quant 0.5	quant 0.97	5quant mod	de
Precision for AMP	15971.851 1814	45.745 10	29.322 1044		55.264 2779.2	
Range for i	10.435	2.195			15.398 9.7	
Stdev for i	2.256	0.254		2.245	2.787 2.2	
GroupRho for i	0.797	0.081	0.611	0.807	0.924 0.8	83
Huon Marine Park						
Fixed effects: mean intercept -7.850 (year -0.063 (depth -0.046 ().302 -8.).314 -0.	ant 0.5qua 489 -7.8 721 -0.0 636 -0.0	48 0.5	nt mode 02 -7.800 12 -0.018 85 -0.016	k]d 0 0 0	
Random effects: Name Model site IID mode i SPDE2 model	1					
Model hyperparamet						
mode	mean	sd O	.025quant	0.5quant (0.975quant	
Precision for site	e 18633.301 1	8369.793	1263.323 1	.3212.009	67220.030 34	45
Range for i	42.971	55.106	5.191	26.524	182.068	1
2.461 Stdev for i	0.235	0.213	0.022	0.175	0.793	
0.064 GroupRho for i 0.881	0.848	0.064	0.691	0.860	0.940	
Freycinet N	larine Park					
i i cyclifict iv						

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -8.480 0.480 -9.524 -8.442 -7.643 -8.363 0 year 0.312 0.334 -0.312 0.301 1.000 0.279 0 depth -1.207 0.415 -2.094 -1.182 -0.461 -1.130 0 Random effects: Name Model

site IID mode i SPDE2 model	1					
Model hyperparame	ters: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 6.654	e 18619.728	18361.217	1261.769	13200.244	67191.66	344
Range for i 2.337	43.403	57.708	5.247	26.236	186.91	1
Stdev for i 0.071	0.324	0.344	0.026	0.221	1.24	
GroupRho for i 0.881	0.848	0.064	0.691	0.860	0.94	


Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean -7.558 -7.960 0.455 0.180 intercept -7.999 0.243 -8.513 -7.986 0 year 0.179 0.141 -0.098 0.179 0 depth -1.484 0.353-2.234-1.464-0.846 -1.422 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 28158.108 37690.944 2234.867 16839.359 123240.234 587 5.926 11.103 Range for i 6.971 10.865 2.469 16.612 1 0.415 Stdev for i 2.150 0.283 1.646 2.131 2.756 2.096 GroupRho for i 0.803 0.085 0.599 0.816 0.927

Beagle Marine Park

0.845

Fixed effects: sd 0.025quant 0.5quant 0.975quant 576 -9.411 -7.817 -6.773 mean mode kld intercept -7.893 0.676 -9.411 -6.773 -7.648 0 year 1.001 0.848 -0.3940.902 2.912 0.679 0 -0.069 0.439 -0.095 depth -0.860 0.864 -0.147 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18609.169 18359.645 1262.037 13189.581 67168.77 344 7.886 Range for i 49.090 4.964 27.575 226.75 73.689 1 1.841 Stdev for i 0.383 0.460 0.030 0.244 1.58 0.081 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.881

An overall positive linear trend for fan pink sponges was detected, equating to a 29% increase in the odds of presence over the survey period. Interestingly, no significant marine park level changes were detected. A negative association for depth was detected indicating that this morphospecies tends to be found in the shallower depths across those which were surveyed.

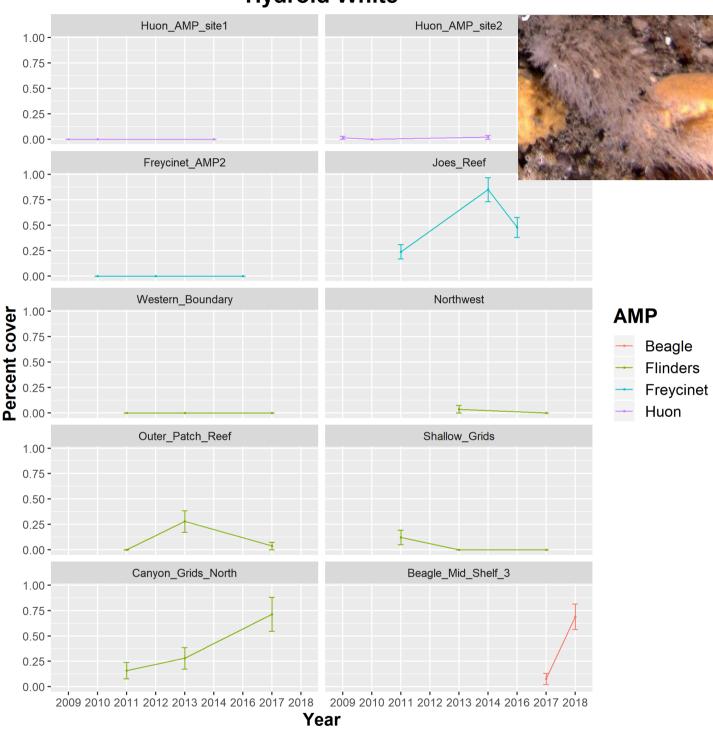
2.4.25 Gorgonian Red Gorgonian Red

Figure 2.4.25 Site level trends in the raw data for Gorgonian Red.

2.4.25.1 Model-based estimates of trend All Marine Parks

Fixed effe	cts:							
intercept	mean -8 858 0			uant 0.975 .851 -	quant m 8.020 -8.	ode kld 837 0		
	-1.515 0				0.985 -1.			
·	-3.085 0				2.227 -3.			
Random eff Name	Model D model							
Model hype	rparamet	ers:						
Precision Range for Stdev for GroupRho f	i i	mean 23348.815 330.397 2.389 0.905		0.025quant 2454.465 213.995 1.947 0.842	16628.43 319.84 2.37	86 84333. 11 504. 75 2.	283 679 870 29 907	mode 6.341 8.709 2.346 0.914
Huon Marine Park								
Fixed effe intercept year depth	mean	0.644 0.254	-4.697 -0.432	5quant 0.9 -3.432 0.067 -1.457	-2.171 -	0.067	d 0 0 0	
	Model ID mode	1						
Model hype	rparamet						_	
mode		mea	n :	sd 0.025qu	iant 0.5qi	uant 0.97	5quant	
Precision	for site	e 18581.97	5 18346.14	10 1272.	073 13168	8.47 670	90.738	347
8.141 Range for	i	487.79	4 162.1	72 240.	707 464	4.63 8	70.480	42
0.851 Stdev for	i	1.46	2 0.2	51 1.	025	1.44	2.007	
1.410 GroupRho f		0.85	2 0.0	53 0.	726 (0.86	0.932	
0.875								

Freycinet Marine Park


Fixed eff	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-6.813	0.266	-7.357	-6.806		-6.791	
year	-0.981	0.157	-1.291	-0.981	-0.676	-0.979	0
depth	-2.513	0.263	-3.049	-2.506	-2.017	-2.492	0

Random effects:

Name Model site IID model i SPDE2 model							
Model hyperparameters:							
mada	mean	sd	0.025quant	0.5quant	0.975quant		
mode Precision for site 9.455	18428.810	17958.063	1320.17	13174.826	66190.907	366	
Range for i	36.742	7.689	24.00	35.931	54.125	3	
4.355 Stdev for i 1.523	1.539	0.149	1.26	1.533	1.849		
GroupRho for i 0.802	0.779	0.064	0.63	0.786	0.881		

Fixed effects: mean intercept -8.066 year -1.413 depth -1.657	0.829	25quant (-9.728 -2.143 -3.745	0.5quant 0.9 -8.054 -1.394 -1.591	975quant -6.471 -0.792 0.071	-1.354 0	
Random effects: Name Model site IID mode i SPDE2 model	21					
Model hyperparame	eters:					
	mean		0.025quant			mode
Precision for sit		11.928	0.060	0.652		0.137
Range for i	495.749	445.221	72.817	370.251		192.370
Stdev for i	0.772	0.329	0.293			0.613
GroupRho for i	0.842	0.068	0.676	0.854	0.938	0.877

An overall linear decrease in the cover of gorgonian red fans was detected over the survey period equating to a 78% decrease in the odds of presence. Linear decreases were also detected for Freycinet and Flinders Marine Parks equating to decreases in the odds of presence of 63% and 76% respectively. A negative association with depth indicates that this morphospecies tends to be found in shallower depths across those surveyed.

2.4.26 Hydroid White Hydroid White

Figure 2.4.26 Site level trends in the raw data for Hydroid White.

2.4.26.1 Model-based estimates of trend All Marine Parks

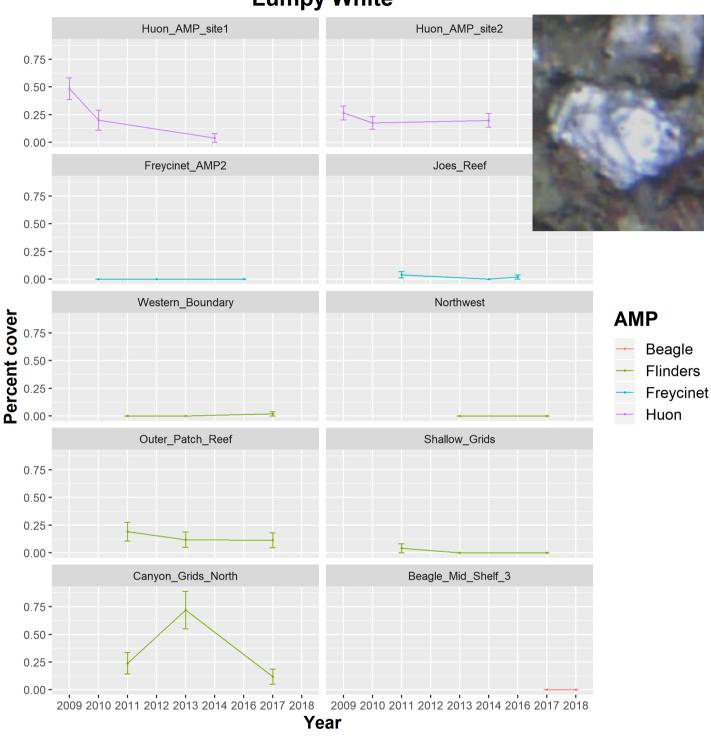
Fixed effects:

mean	sd 0.02	5quant 🤅	0.5quant	0.975quant	mode	kld	
intercept -9.179 (0.379	-9.937	-9.174	-8.448	-9.165	0	
year 0.666	0.262	0.160	0.663	1.187	0.658	0	
depth -0.050	0.334	-0.707	-0.050	0.604	-0.049	0	
Random effects: Name Model AMP IID model i SPDE2 model							
Model hyperparame	ters:						
	mean		sd 0.025	quant 0.5q	uant 0.9	975quant	mode
Precision for AMP	18401.626	18241.3	315 122	1.943 1300	9.64 66	5412.021	3332.545
Range for i	293.712	112.0	067 13	80.209 27	5.50	565.047	241.698
Stdev for i	2.280	0.3	301	1.739	2.26	2.922	2.230
GroupRho for i	0.862	0.0	049	0.744	0.87	0.934	0.884
Huon Mar	ine Park						
Fixed effects:							

intercept year depth	mean).883 -11).592 -(Ĺ.887 –9.).452 0.	.719 1.	uant mode .432 -9.637 .873 0.723 .296 0.900	0	
	Model ID model						
Model hype	rparamet	ers:					
mode		mean	sd	0.025quant	0.5quant	0.975quant	
	for site	19279.251	19117.906	1370.697	13649.661	69697.520	377
Range for	i	45.783	61.428	5.357	27.529	198.616	1
2.741 Stdev for	i	0.234	0.219	0.020	0.172	0.807	
0.058 GroupRho f 0.881	or i	0.848	0.064	0.692	0.860	0.940	

Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.499	0.427	-9.394	-8.479	-7.716	-8.439	0
year .	0.212	0.201	-0.179	0.210	0.610	0.208	0
depth	-2.461	0.380		-2.447		-2.419	
Random eft Name	fects: Model						


site IID model i SPDE2 model						
Model hyperparameters:						
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site	18876.604	18724.474	1313.477	13352.532	68551.584	361
6.080 Range for i 6.942	35.780	15.989	14.736	32.449	76.022	2
Stdev for i	1.229	0.230	0.825	1.214	1.725	
1.187 GroupRho for i 0.827	0.792	0.078	0.608	0.804	0.911	

Fixed effects: mode kld mean sd 0.025quant 0.5quant 0.975quant intercept -7.762 0.245 -8.273 -7.751 -7.312 -7.729 0 0.32 0.159 0. year 0.012 32 0.637 0.3190 0.977 0.139 0.974 depth 1.258 0.969 0.710 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 22630.774 22161.500 2224.909 16218.917 81000.26 627 7.226 Range for i 72.861 158.778 7.039 32.754 386.98 1 3.652 Stdev for i 0.458 0.315 0.057 0.391 1.22 0.175 GroupRho for i 0.847 0.064 0.692 0.857 0.94 0.878

Beagle Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant 39 -7.778 -6.865 -6.055 mean mode kld intercept -6.878 0.439 -6.055 -6.838 0 -0.258 year 0.457 0.396 0.435 1.296 0.391 0 -0.909 0.260 -0.908 depth -1.422 -0.400 -0.906 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18879.533 18583.847 1273.997 13396.49 67764.809 348 7.095 221.306 75.041 196.67 512.440 15 Range for i 114.568 5.216 Stdev for i 1.477 0.311 0.947 1.45 2.164 1.402 GroupRho for i 0.846 0.071 0.672 0.86 0.944 0.885

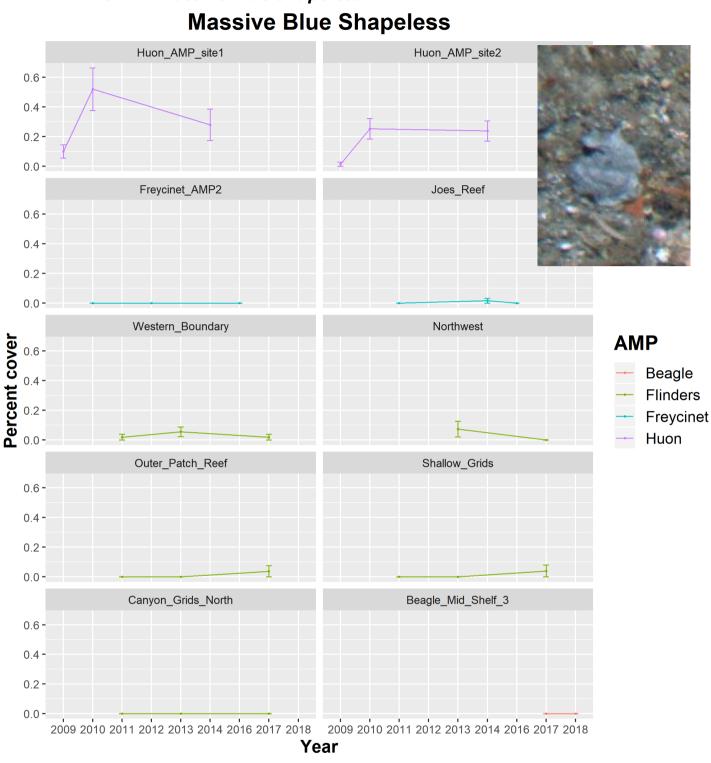
An overall positive trend was found for the hydroid white morphospecies, with estimates indicating an increase in the odds of 95% per year over the survey period. A significant positive trend was also found for Flinders Marine Park equating to a 38% increase in the odds of presence per year. No overall association with depth was discovered.

2.4.27 Lumpy White Lumpy White

Figure 2.4.27 Site level trends in the raw data for Lumpy White sponges.

2.4.27.1 Model-based estimates of trend All Marine Parks

Fixed	effects:	
-------	----------	--


mean intercept -8.329		025quant -9.594	0.5quant (-8.324	•	mode kla -8.315 0			
year -0.419	0.179	-0.777	-0.417	-0.074	-0.413 6	2		
depth 0.486	0.171	0.152	0.486	0.822	0.486 6	9		
Random effects: Name Model AMP IID model i SPDE2 model	L							
Model hyperparame	eters:							
	mean	sd	0.025quan ⁻	t 0.5quant	0.975quant	t mode		
Precision for AMF		0.882	0.15	4 0.759	3.345	5 0.405		
Range for i	283.991	235.313	52.59	5 218.708	904.998	3 129.557		
Stdev for i	0.795	0.182	0.48		1.193	8 0.756		
GroupRho for i	0.852	0.063	0.69	9 0.863	0.942	2 0.883		
Huon Marine Park Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -6.159 0.149 -6.467 -6.154 -5.881 -6.144 0								
year -0.369	0.160	-0.70			71 - 0.351	0		
	0.116	-0.20				0		
Random effects: Name Model site IID mod i SPDE2 model	el							
Model hyperparam		nean	sd 0.()25quant	0.5quant 0	.975quant		
mode				-	-	-		
Precision for si 1.287	te 18763.	.770 184	89.025 1	L303.743 1	.3317.585	67577.710	357	
Range for i 3.064	25.	.762	17.947	4.780	21.519	72.827	1	
Stdev for i	0.	. 272	0.202	0.038	0.223	0.799		
0.112 GroupRho for i 0.881	0.	. 848	0.064	0.691	0.860	0.940		
Freycinet	Marine Pa	rk						

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.452 0.648 -10.881 -9.392 -8.345 -9.263 0 year -0.377 0.552 -1.510 -0.360 0.659 -0.327 0 depth -0.846 0.593 -2.119 -0.807 0.211 -0.725 0 Random effects: Name Model

site IID model i SPDE2 model						
Model hyperparamete	ers:					
mada	mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 8.457	18606.373	18358.315	1262.190	13187.135	67162.01	344
Range for i 1.477	47.044	66.546	4.638	27.366	211.52	1
Stdev for i 0.091	0.365	0.414	0.033	0.241	1.45	
GroupRho for i 0.881	0.848	0.064	0.691	0.860	0.94	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld intercept -8.381 0.360 -8.369 -0.301 -7.707 -8.345 0.130 -0.292 -9.122 0 0.305 0.228 -0.765 0 year depth 0.856 0.293 0.283 0.855 1.434 0.852 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18297.252 18234.189 1256.533 12905.30 66474.407 343 9.471 Range for i 203.194 737.727 5 202.514 21.198 144.33 8.722 Stdev for i 1.033 0.274 0.574 1.01 1.644 0.961 GroupRho for i 0.829 0.069 0.664 0.84 0.931 0.862

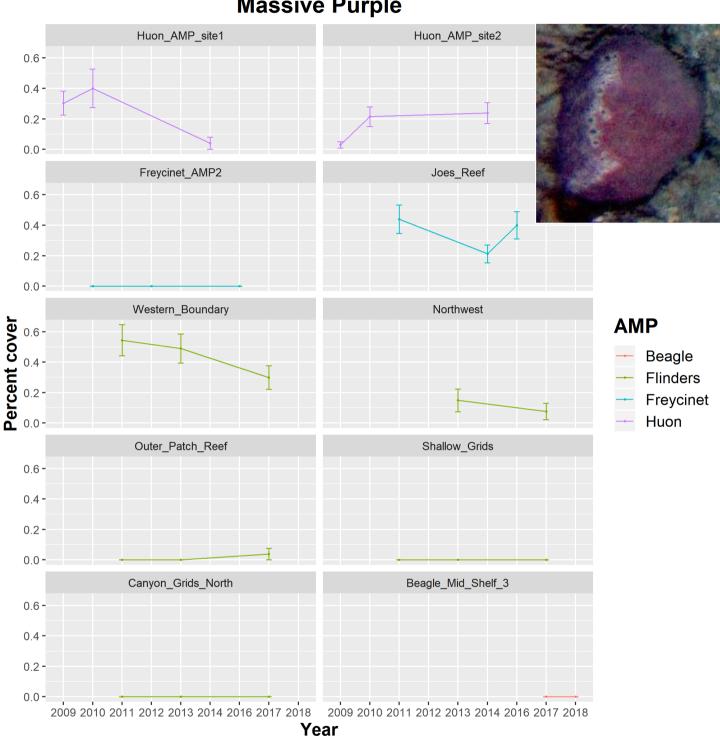
An overall negative linear trend for lumpy white sponges was detected, equating to a 34% reduction in the odds of presence over the survey period. Also, a decrease equating to a 31% decrease in odds was detected at Huon Marine Park. A positive association for depth was detected indicating that this morphospecies tends to be found in the deeper depths across those which were surveyed.

Massive Blue Shapeless 2.4.28

Figure 2.4.28 Site level trends in the raw data for Massive Blue Shapeless sponges.

2.4.28.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean intercept -9.266 0. year 0.210 0. depth -1.022 0.	171 -0.129	-9.259 -7 0.211 0	uant mode k .722 -9.245 .542 0.212 .285 -0.963	ld 0 0
Random effects: Name Model AMP IID model i SPDE2 model				
Model hyperparamete				
Range for i 3 Stdev for i	mean sd 0.02 0.737 0.554 4.877 25.612 0.808 0.202 0.827 0.068	5quant 0.5qua 0.188 0.5 9.195 27.7 0.457 0.7 0.658 0.8	37103.594951.246	18.967 0.770
Huon Marin	e Park			
Fixed effects: mean intercept -6.500 0 year 0.229 0 depth -0.334 0	.147 -0.062	-6.496 0.230	5quant mode -6.187 -6.489 0.515 0.233 -0.002 -0.322	0
Random effects: Name Model site IID model i SPDE2 model				
Model hyperparamet		cd 0 025aua	nt 0.5quant	0.075 auget
mode Precision for site	mean	-	78 14597.095	73271.427 484
9.002 Range for i		391 7.9		227.882 1
7.307 Stdev for i		284 0.1		1.277
0.495 GroupRho for i 0.875		070 0.6		0.936


Freycinet Marine Park

Fixed effects:									
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d		
intercept	-10.085	0.708	-11.643		-8.868				
year	0.129	0.721	-1.234	0.110	1.601	0.072	0		
depth	-0.205	0.709	-1.649	-0.186	1.135	-0.148	0		
Random eff Name	⁻ ects: Model								

site IID model i SPDE2 model						
Model hyperparamete mode	ers: mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site	18629.481	18377.348	1263.788	13205.117	67218.025	345
3.329 Range for i	66.004	118.315	6.589	33.378	327.683	1
4.342 Stdev for i	0.212	0.194	0.016	0.157	0.727	
0.046 GroupRho for i 0.881	0.848	0.064	0.691	0.860	0.940	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.787 0.437 -9.749 -8.748 -8.036 -8.665 0 0.068 0.318 -0.565 0.070 0.685 0.075 0 year depth -0.906 0.613 -2.264-0.846 0.135 -0.718 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode 67497.291 349 Precision for site 18725.791 18465.994 1276.691 13278.06 3.653 51.801 Range for i 76.278 5.932 29.51 234.264 1 3.518 Stdev for i 0.264 0.254 0.024 0.19 0.941 0.068 GroupRho for i 0.848 0.064 0.691 0.86 0.940 0.882

No overall or marine park level trends were detected for repent orange sponges. A negative association for depth was detected indicating that this morphospecies tends to be found in the shallower depths across those which were surveyed.

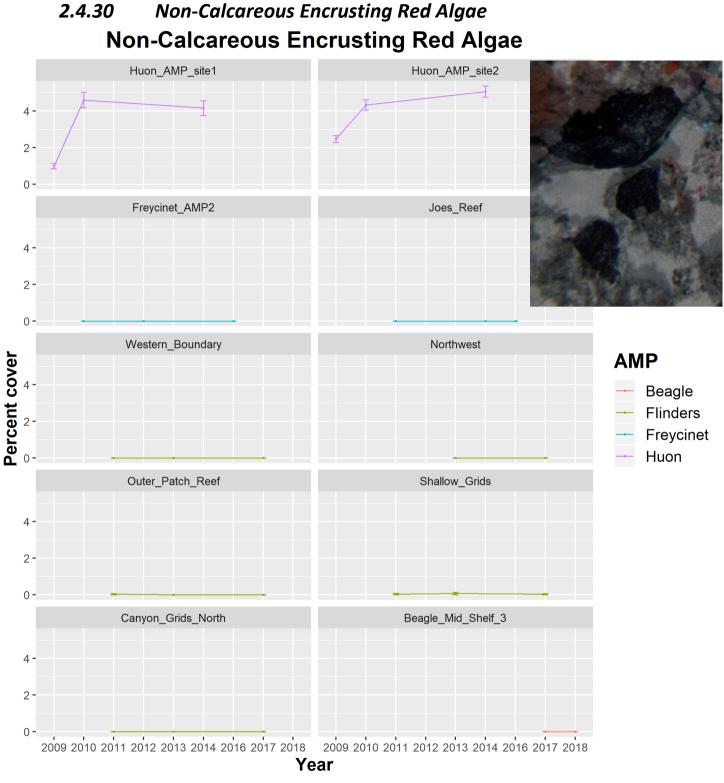
Massive Purple Massive Purple

2.4.29

Figure 2.4.29 Site level trends in the raw data for Massive Purple sponges.

2.4.29.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld
intercept -8.533 0.534 -9.588 -8.531 -7.492 -8.526 0
year -0.313 0.129 -0.570 -0.313 -0.062 -0.311 0
depth -2.226 0.321 -2.883 -2.217 -1.623 -2.198 0
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for AMP 1.341 0.800 0.412 1.145 3.411 0.852
Range for i 30.488 15.689 10.955 26.939 70.559 21.318
Stdev for i 1.554 0.162 1.252 1.550 1.888 1.545
GroupRho for i 0.774 0.077 0.600 0.782 0.899 0.799
Huon Marine Park
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -6.780 0.187 -7.158 -6.776 -6.424 -6.768 0
year 0.047 0.175 -0.304 0.050 0.381 0.056 0
depth 0.116 0.159 -0.201 0.117 0.424 0.120 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant
Precision for site 18218.178 18181.987 1238.542 12834.324 66324.660 338
3.648 Range for i 25.813 10.825 10.758 23.815 52.401 2 0.266
Stdev for i 1.317 0.293 0.805 1.299 1.950
GroupRho for i 0.836 0.071 0.660 0.849 0.935 0.873

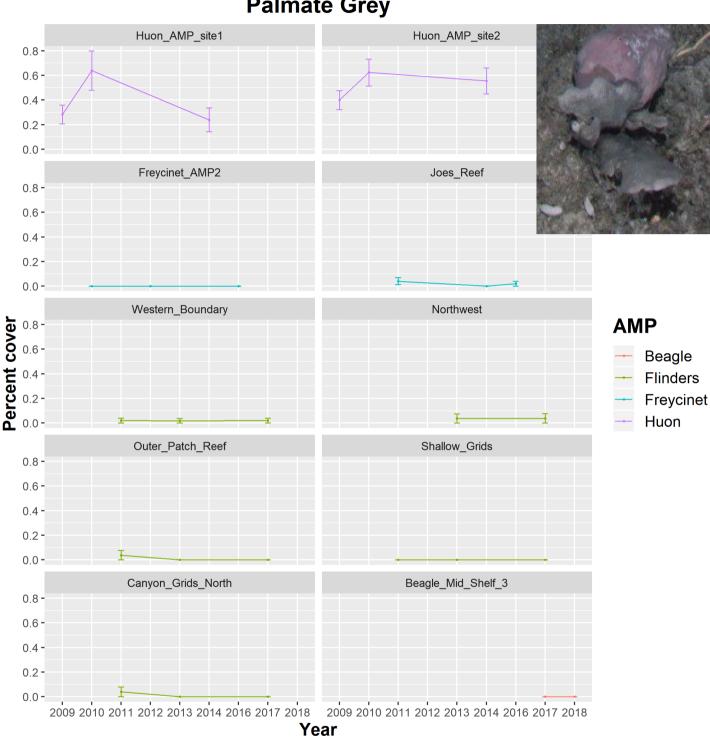

Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.509	0.417	-9.393		-7.754		0
				-0.117	0.256	-0.118	0
depth	-2.213	0.365	-2.977	-2.196	-1.541	-2.164	0
Random eff Name	fects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers:					
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site	20014.953	20367.670	1433.667	13975.371	74250.791	394
9.221 Range for i	15.112	6.154	6.762	13.893	30.437	1
1.824 Stdev for i	1.387	0.321	0.842	1.360	2.098	
1.310 GroupRho for i	0.798	0.084	0.597	0.811	0.921	
0.838	0.790	0.004	0.397	0.011	0.921	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mean mode kld intercept -9.184 0.655 -10.597 -9.137 -8.024 -9.040 0 -0.304 0.189 -0.680 -0.302 0.063 -0.299 0 year depth -3.4390.942-5.448-3.381-1.744 - 3.2640 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 16929.557 17775.452 1150.997 11601.669 63779.82 315 3.763 Range for i 159.506 101.106 43.784 134.440 423.43 9 6.395 Stdev for i 1.085 0.242 0.655 1.073 1.60 1.055 GroupRho for i 0.825 0.076 0.649 0.835 0.94 0.859

An overall negative linear trend for massive purple sponges was detected, equating to a 27% reduction in the odds of presence over the survey period. Interestingly, no significant marine park level changes were detected. A negative association for depth was detected indicating that this morphospecies tends to be found in the shallower depths across those which were surveyed.


Figure 2.4.30 Site level trends in the raw data for Non-Calcareous Encrusting Red Algae.

2.4.30.1 Model-based estimates of trend

All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -11.125 1.746 -14.656 -11.088 -7.799 -11.015 0 year 0.112 0.095 -0.075 0.112 0.297 0.112 0 depth -2.702 0.297 -3.298 -2.698 -2.130 -2.689 0
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
meansd 0.025quant 0.5quant 0.975quantmodePrecision for AMP0.1000.0720.0160.0820.2850.046Range for i33.6835.26624.32833.36444.98532.802Stdev for i0.9970.0850.8360.9951.1690.993GroupRho for i0.8980.0420.7930.9060.9560.921
Huon Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -4.106 0.184 -4.468 -4.106 -3.745 -4.106 0 year 0.057 0.065 -0.070 0.057 0.184 0.058 0 depth -1.023 0.101 -1.226 -1.021 -0.828 -1.018 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for site59.274151.6781.53421.865350.523.488Range for i32.9805.36824.18832.35845.1930.995Stdev for i0.9890.0840.8370.9851.160.975GroupRho for i0.8840.0490.7610.8940.950.911

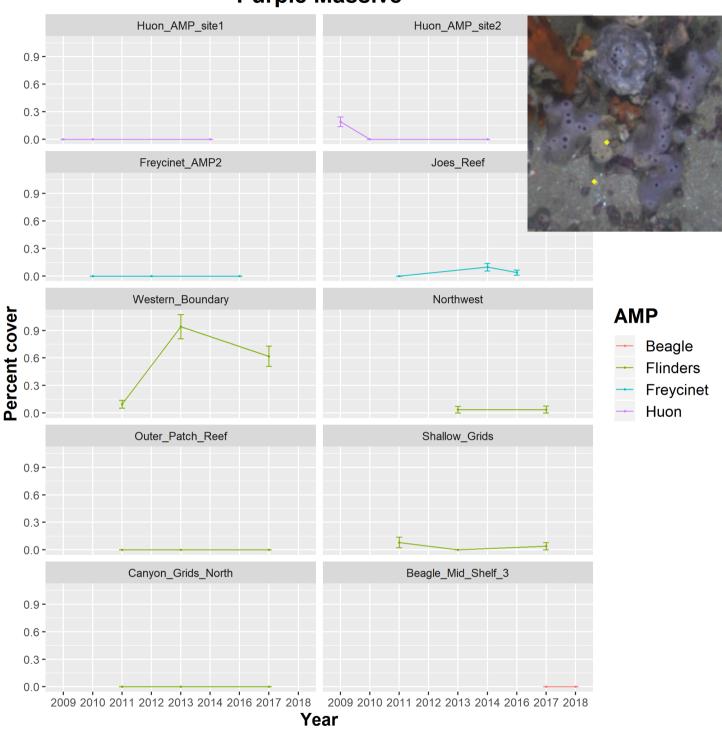
No overall or marine park level trends were detected for non-calcareous encrusting red algae. A significant negative depth association was found indicating this morphospecies tends to be found in shallower depths across those which were surveyed.

2.4.31 Palmate Grey Palmate Grey

Figure 2.4.31 Site level trends in the raw data for Palmate Grey sponges.

2.4.31.1 Model-based estimates of trend All Marine Parks

Fixed eff intercept year depth	mean	0.771 0.155	-10.510 -0.407	-8.97	8 0.20	t mode k 3 -8.967 0 -0.095 2 -1.171	1d 0 0 0	
	fects: Model ID model 2 model							
Model hyp	erparame	ters:						
Precision Range for Stdev for GroupRho	for AMP i i	mean	0.436 29.357 0.168	.025quan 0.09 20.79 0.61 0.72	0 50.645 5 0.908	1.714	40.156 0.896	
I	Huon Mar	rine Park						
Fixed eff intercept year depth	mean	0.502 0.200	.025quan -6.71 -0.51 -1.52	5 -5. 3 -0.	118 0.	ant mode 744 -5.720 272 -0.117 646 -1.080	' 0	
	fects: Model IID mode 2 model	el						
Model hyp	erparam		moon	cd (0.025 guant	0 Squant	0.975quant	
mode Precision 4.822	for si		mean .200 178		•		65938.874	334
Range for	' i	147	.386 2	54.799	0.017	29.308	890.403	
Stdev for 0.894	' i	0	.978	0.267	0.543	0.949	1.586	
GroupRho 0.886	for i	0	.858	0.058	0.718	0.868	0.941	


Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-9.512	0.680	-11.016	-9.447	-8.352	-9.308	0
year .	-0.392	0.555	-1.531	-0.376	0.650	-0.342	0
depth	-0.943	0.615	-2.268	-0.900	0.144	-0.810	0
Random eff							
Name	Mode1						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 1.246	18638.439	18384.929	1263.258	13211.689	67235.226	345
Range for i 3.288	49.987	71.725	5.767	28.894	224.756	1
Stdev for i 0.056	0.228	0.211	0.019	0.169	0.783	
GroupRho for i 0.881	0.848	0.064	0.692	0.860	0.940	

Fixed effects: mode kld sd 0.025quant 0.5quant 0.975quant mean intercept -8.839 0.381 year -0.221 0.372 -8.813 -0.206 -8.161 -8.760 0.469 -0.176 -9.657 0 -0.993 0 depth -0.345 0.452 -1.338-0.3050.431 -0.219 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode 67348.209 348 Precision for site 18670.743 18429.180 1272.355 13231.900 0.506 67.409 Range for i 121.959 6.676 33.885 336.663 1 4.497 Stdev for i 0.210 0.191 0.016 0.156 0.714 0.044 GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.881

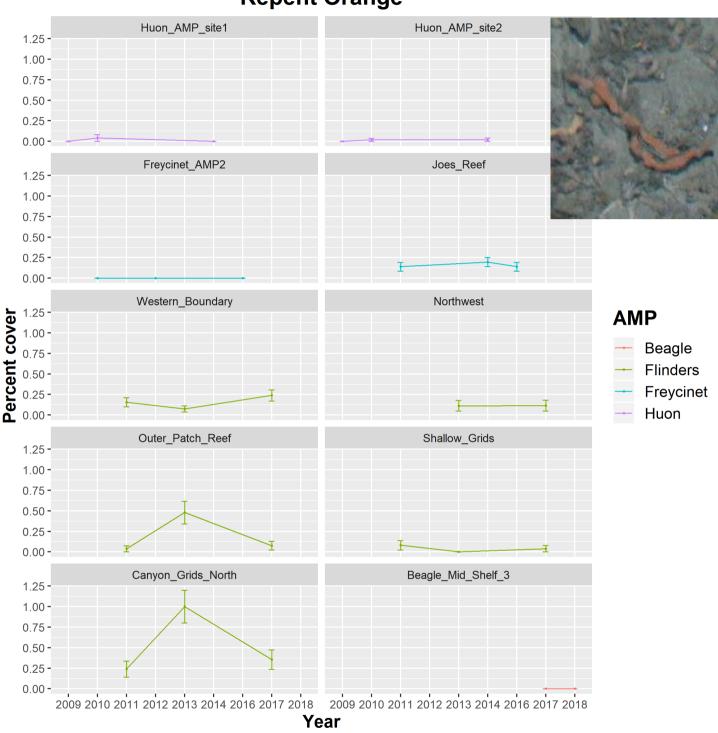
No overall or marine park level trends were detected for palmate grey sponges. A significant negative depth association was found indicating this morphospecies tends to be found in shallower depths across those which were surveyed.

2.4.32 Purple Massive Purple Massive

Figure 2.4.32 Site level trends in the raw data for Purple Massive sponges.

2.4.32.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean intercept -10.046 (year -0.150 (depth -2.299 (0.535 -11 0.341 -0	quant 0.5qu L.174 -10. 0.826 -0. 3.812 -2.	147 0.5	ant mode 069 -9.964 511 -0.142 021 -2.170	kld 0 0 0	
Random effects: Name Model AMP IID model i SPDE2 model						
Model hyperparamete	ers:					
Precision for AMP 2 Range for i Stdev for i GroupRho for i	mean 20963.638 20 660.049 1.708 0.809		025quant 0. 1472.170 148 307.278 6 1.148 0.654	356.502 7	5752.63 4024 1280.39 531 2.43 1	mode .749 .527 .626 .837
Huon Marin	ne Park					
Fixed effects:						
mean intercept -10.617	sd 0.02	5quant 0.50 13.094 -10	quant 0.9750	quant mo 3.743 -10.2	ode kld 254 0	
year -2.361 depth -0.959	1.174	-4.973 -2	2.241 -(0.382 - 1.9 0.009 - 0.8	<mark>0 086</mark>	
Random effects: Name Model site IID model i SPDE2 model						
Model hyperparamet			0.005	. .	0.075	
mode	mean		0.025quant	-	-	
Precision for site 7.43	9236.905		1325.394	13560.287	70412.21	361
Range for i 4.58	22.553	12.827	8.201	19.211	56.21	1
Stdev for i 1.41	1.534	0.424	0.839	1.491	2.49	
GroupRho for i 0.88	0.848	0.064	0.691	0.859	0.94	


Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.440	0.414	-9.336	-8.409	-7.712	-8.345	
year .	0.468	0.394	-0.255	0.449	1.294	0.411	0
depth			-1.277			-0.456	0
Random ef Name	fects: Model						

site IID model i SPDE2 model						
Model hyperparamete mode	ers: mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 6.668	18709.087	18412.963	1271.478	13279.225	67401.588	347
Range for i 4.333	63.311	109.346	6.565	32.782	309.982	1
4.333 Stdev for i 0.048	0.216	0.194	0.017	0.162	0.722	
GroupRho for i 0.882	0.849	0.064	0.691	0.860	0.940	

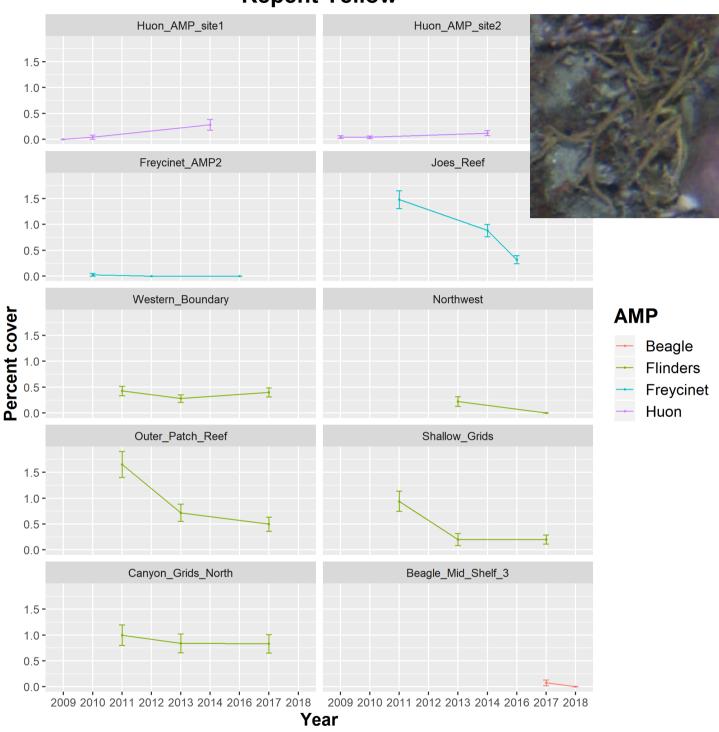
Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.615 0.743 -8.575 0.234 -2.508 -7.266 -8.495 0.470 0.234 -10.1860 0.234 0.120 -0.002 0 year depth -2.582 1.128 -4.997-0.566 -2.359 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode 0.134 Precision for site 1.328 1.430 0.904 5.07 0.364 Range for i 14.958 6.526 6.513 13.537 31.51 11.246 0.540 1.008 1.033 0.294 Stdev for i 1.68 0.958 GroupRho for i 0.849 0.064 0.693 0.94 0.860 0.881

No overall trend was found for purple massive sponges. A negative linear trend equating to a decrease of 91% per year in the odds of presence was found for Huon Marine Park. A negative trend for depth was found indicating this morphospecies was found in shallower depths across those that were surveyed.

2.4.33 Repent Orange Repent Orange

Figure 2.4.33 Site level trends in the raw data for Repent Orange sponges.

2.4.33.1 Model-based estimates of trend All Marine Parks


Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -8.463 0.448 -9.349 -8.460 -7.589 -8.456 0 year 0.085 0.159 -0.228 0.085 0.396 0.085 0 depth 0.111 0.152 -0.190 0.112 0.406 0.113 0 Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:meansd 0.025quant 0.5quant 0.975quantmodePrecision for AMP1.6810.7440.6061.5623.5071.314Range for i123.46756.86851.459110.549271.34790.343Stdev for i1.2930.1441.0481.2801.6151.246GroupRho for i0.7980.0410.7100.7990.8720.801
Huon Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.109 0.508 -10.210 -9.071 -8.216 -8.992 0 year 0.213 0.492 -0.794 0.228 1.136 0.258 0 depth -0.239 0.544 -1.410 -0.202 0.727 -0.125 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant
mean sd 0.025quant 0.5quant 0.975quant mode Precision for site 18647.584 18373.936 1262.273 13225.444 67252.35 344
7.118 Range for i 39.067 47.868 4.531 24.740 161.16 1
1.315 Stdev for i 0.291 0.293 0.029 0.206 1.07
0.080 GroupRho for i 0.848 0.064 0.691 0.860 0.94 0.882
Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-8.645	0.366			-7.980		
			-0.539	-0.010	0.524		
depth	-1.098	0.378	-1.890	-1.080	-0.406	-1.044	0
	_						
Random eff							
Name	Mode1						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 5.137	19628.203	20032.212	1471.941	13708.276	72872.932	408
Range for i 3.321	41.601	29.155	11.163	33.703	118.165	2
Stdev for i 1.524	1.617	0.380	0.974	1.584	2.458	
GroupRho for i 0.853	0.816	0.077	0.632	0.828	0.928	

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -6.866 0.153 year 0.038 0.125 -7.173 -0.209 -6.573 -6.858 0.281 0.039 -6.863 0 0.038 0 depth Ó 0.368 0.139 0.093 0.368 0.638 0.369 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 19126.81 18265.653 1530.234 13866.390 66995.564 433 1.972 Range for i 45.04 25.450 13.300 109.870 2 39.431 9.721 Stdev for i 0.94 0.181 0.615 0.932 1.322 0.919 0.79 GroupRho for i 0.106 0.524 0.811 0.933 0.852

No overall or marine park level trends were detected for repent orange sponges. Also, no significant depth trends were detected for this morphospecies.

2.4.34 Repent Yellow Repent Yellow

Figure 2.4.34 Site level trends in the raw data for Repent Yellow sponges.

2.4.34.1 Model-based estimates of trend

All Marine Parks

,			-6.458 0.021	-7.674 @))
Random effects: Name Model AMP IID mode i SPDE2 model	-				
Model hyperparam					
		sd 0.025quan	•	•	mode
Precision for AM	IP 1.116 1.3	31 0.09	1 0.715	4.602	0.247
Range for i	254.505 94.4	12 121.53	4 237.237	485.753	206.954
Stdev for i	1.318 0.1	46 1.05	1 1.310	1.627	1.297
GroupRho for i	0.871 0.0	41 0.77	5 0.876	0.935	0.886
Huon Me	arine Park				
Fixed effects:					
mea	n sd 0.025q	uant 0.5qua	nt 0.975qua	nt mode	
intercept -7.46		.037 - 7.4!		77 -7.423	0
year 0.80 depth 0.06		.367 0.79 .427 0.00			0 0
ucptii 0.00	-0	. 727 0.00	J- 0.J.	22 0.075	v

Random effects: Name Model

site IID model i SPDE2 model

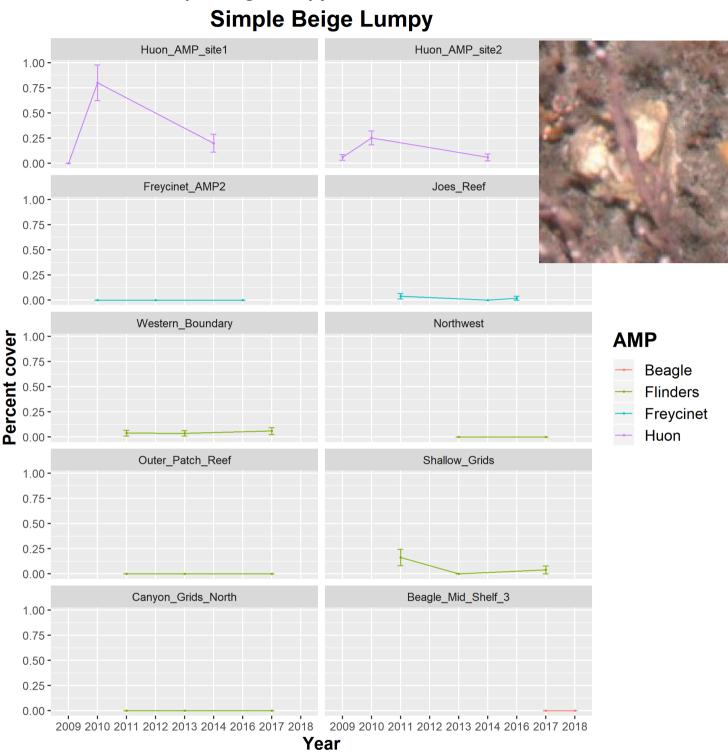
Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18610.176 18356.073 1263.693 13192.553 67164.094 345 3.407 Range for i 4.637 28.467 19.188 5.168 24.126 78.598 1 0.201 0.045 0.240 0.817 Stdev for i 0.287 0.134 GroupRho for i 0.848 0.064 0.691 0.859 0.940 0.881

Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-6.690	0.190	-7.078	-6.684	-6.331	-6.674	0
year	-0.487	0.134	-0.752	-0.486	-0.226	-0.484	0
depth	-1.249	0.196	-1.648	-1.244	-0.878	-1.234	0
Random eff Name	Fects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers:					
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 9.717	21052.21	21260.651	1452.914	14749.359	77409.770	396
Range for i 7.103	20.43	7.161	9.945	19.244	37.727	1
Stdev for i	1.30	0.163	1.001	1.287	1.643	
1.271 GroupRho for i 0.886	0.86	0.056	0.727	0.869	0.942	

Fixed effects:


Fixed effects:						
mean		quant 0.5qu	uant 0.975qu	uant mode	e kld	
intercept -5.922 (.676 -5.91	90	
year -0.313 ().094 -().500 –0 .		.131 -0.31		
depth 0.370 ().129 ().117 0.	.371 0.	.622 0.372	20	
Random effects: Name Model site IID model i SPDE2 model	I					
Model hyperparamet	ters:					
<u>, , , , , , , , , , , , , , , , , , , </u>	mean	sd	0.025quant	0.5quant	0.975quant	
mode						
Precision for site	e 19742.369	19522.072	1370.201	13988.08	71640.791	376
6.708						
Range for i	53.099	21.474	21.983	49.59	104.690	4
2.895						
Stdey for i	1.009	0.121	0.788	1.00	1.263	
0.995 GroupRho for i 0.843	0.809	0.075	0.630	0.82	0.922	

Beagle Marine Park

Fixed effects: mean sd 0.0 intercept -8.566 0.836 year -0.982 0.739 depth -0.166 0.683 sd 0.025quant 0.5quant 0.975quant mode kld -7.168 -8.280 0.304 -0.796 1.328 -0.343 -10.436 -8.477 -2.593 -0.922 -1.351 -0.223 0 0 0 Random effects: Name Model site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18627.136 18374.324 1264.137 13203.786 67225.495 345 4.261 Range for i 2.777 46.432 62.888 5.375 27.764 202.251 1 Stdev for i 0.250 0.239 0.022 0.181 0.885 0.061

GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.881

No overall linear trend was found for repent yellow sponges. A linear increase was detected for the repent yellow morphospecies in Huon Marine Park equating to a 124% increase in the odds of presence each year. Linear decreases were detected in Freycinet and Flinders Marine Parks, equating to 39% and 27% decreases in the odds of presence per year respectively. No significant effect for depth was detected.

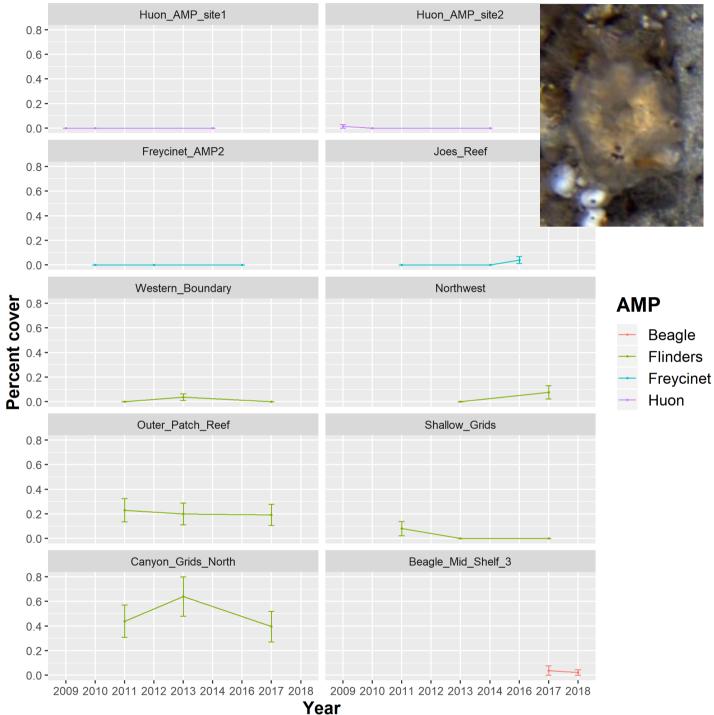
Simple Beige Lumpy 2.4.35

Figure 2.4.35 Site level trends in the raw data for Simple Beige Lumpy sponges.

2.4.35.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.573 0.523 -10.637 -9.559 -8.582 -9.533 0 year -0.495 0.349 -1.199 -0.489 0.173 -0.476 0 depth -1.885 0.657 -3.187 -1.881 -0.607 -1.873 0
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for AMP 19567.35618651.1031698.27114219.73069276.6174818.588Range for i1245.293632.482436.9181108.6482849.391882.156Stdev for i1.4880.3270.9401.4572.2211.398GroupRho for i0.8430.0620.6920.8530.9330.872
Huon Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -5.025 1.730 -8.422 -5.025 -1.632 -5.024 0 year -0.297 0.668 -1.611 -0.296 1.012 -0.295 0 depth -0.596 0.323 -1.230 -0.596 0.039 -0.597 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant
mode Precision for site 18854.678 18539.395 1269.936 13385.839 67716.695 347
5.083 Range for i
6.266 Stdev for i 1.499 0.467 0.775 1.435 2.594
1.315 GroupRho for i 0.829 0.068 0.664 0.841 0.928 0.863
Freycinet Marine Park

Fixed effe intercept year depth	mean -9.726 -0.427	0.787 0.561	-11.472	-9.647 -0.411	0.975quant -8.394 0.628 -0.020	-9.478	0 0
Random eff Name	fects: Model						


site IID model i SPDE2 model						
Model hyperparamete	ers:					
mode	mean	sd	0.025quant	0.5quant	0.975quant	
Precision for site 8.976	18606.012	18359.614	1262.339	13186.293	67161.405	344
Range for i 3.308	49.379	68.632	5.644	29.080	217.968	1
S.508 Stdev for i 0.057	0.271	0.270	0.021	0.192	0.984	
GroupRho for i 0.881	0.848	0.064	0.691	0.860	0.940	

Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.469 0.367 year -0.230 0.294 -7.830 -8.379 0.321 -0.201 -9.267 -8.44 0 -0.22 -0.833 0 depth -0.76 -0.806 0.502 -1.9110.056 -0.663 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 18653.879 18379.276 1258.824 13229.061 67274.472 343 3.760 54.842 30.429 Range for i 84.464 6.128 253.119 1 3.723 Stdev for i 0.207 0.182 0.018 0.157 0.683 0.051 GroupRho for i 0.848 0.064 0.691 0.860 0.940 0.882

No overall or marine park level trends were detected for simple beige lumpy sponges. A significant negative depth association was found indicating this morphospecies tends to be found in shallower depths across those which were surveyed.

2.4.36 Simple Beige Lumpy Shapeless Simple Beige Lumpy Shapeless

Figure 2.4.36 Site level trends in the raw data for Simple Beige Lumpy Shapeless sponges.

2.4.36.1 Model-based estimates of trend All Marine Parks

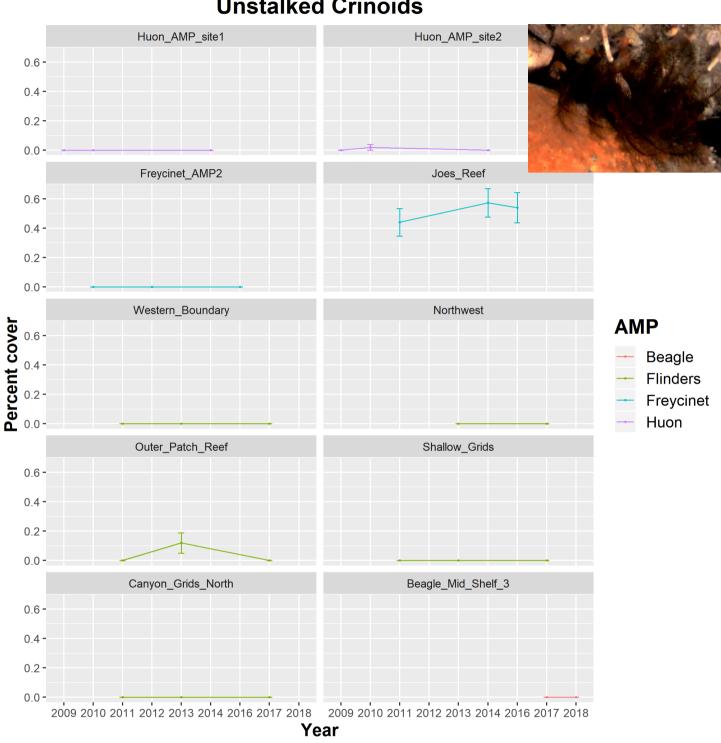
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -9.232 0.575 -10.380 -9.225 -8.122 -9.212 0 year 0.033 0.187 -0.336 0.034 0.398 0.035 0 depth 0.764 0.146 0.479 0.763 1.054 0.762 0
Random effects: Name Model AMP IID model i SPDE2 model
Model hyperparameters:
meansd0.025quant0.5quant0.975quantmodePrecision for AMP1.2641.0040.2031.0013.9110.549Range for i150.029126.21121.499115.893483.19159.215Stdev for i0.8790.2210.5020.8621.3600.831GroupRho for i0.8330.0800.6360.8480.9430.878
Huon Marine Park
Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -10.187 0.809 -11.990 -10.102 -8.828 -9.918 0 year -0.400 0.868 -2.336 -0.309 1.058 -0.111 0
depth -0.279 0.723 -1.863 -0.218 0.972 -0.088 0
Random effects: Name Model site IID model i SPDE2 model
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant
mode Precision for site 18679.481 18437.909 1272.749 13237.89 67398.340 348
0.909 Range for i 42.255 53.882 4.981 26.16 178.536 1
2.089 Stdev for i 0.263 0.255 0.025 0.19 0.942
0.069 GroupRho for i 0.848 0.064 0.691 0.86 0.940 0.881
Freucinet Marine Dark

Freycinet Marine Park

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept	-10.112	0.912	-12.148	-10.015	-8.585	-9.802	0
year	0.968	0.831	-0.455	0.890	2.801	0.726	0
depth	-0.638	0.650	-2.037	-0.593	0.516	-0.500	0
Random eff Name	fects: Model						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975quant	
mode Precision for site 8.438	18896.612	18606.643	1323.258	13420.365	67946.466	362
Range for i 3.425	51.992	77.075	5.930	29.493	237.488	1
Stdev for i 0.054	0.227	0.211	0.019	0.167	0.786	
GroupRho for i 0.881	0.848	0.064	0.692	0.860	0.940	

Flinders Marine Park


Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean -7.883 -0.334 intercept -7.467 0.202 -7.460 -7.090 -7.446 0 -0.046 0.145 -0.044 0.234 -0.042 year 0 depth 0.950 0.134 0.691 0.949 1.217 0.946 0 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 20635.236 20004.252 1787.336 14855.722 73974.206 504 7.307 Range for i 79.579 136.621 9.381 41.487 384.530 1 8.907 Stdev for i 0.795 0.238 0.387 0.780 1.305 0.745 GroupRho for i 0.835 0.072 0.657 0.848 0.936 0.873

Beagle Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -8.183 0.632 year -0.323 0.634 -9.570 -1.556 -7.093 -8.011 0.931 -0.335 -8.128 0 -0.327 0 0.815 -0.473 depth -0.385 0.570 -1.424-0.4140 Random effects: Name Mode1 site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode 1263.123 13222.251 67262.84 345 Precision for site 18647.378 18382.204 0.205 Range for i 41.916 54.684 4.694 25.606 179.93 1 1.528 Stdev for i 0.311 0.327 0.030 0.214 1.18 0.083

GroupRho for i 0.848 0.064 0.692 0.860 0.94 0.881

No overall or marine park level trends were detected for simple beige lumpy shapeless sponges. A significant positive depth association was found indicating this morphospecies tends to be found in shallower depths across those which were surveyed.

2.4.37 Unstalked Crinoids Unstalked Crinoids

Figure 2.4.37 Site level trends in the raw data for Unstalked Crinoids.

2.4.37.1 Model-based estimates of trend All Marine Parks

Fixed effects: mean intercept -12.025 0 year -0.343 0 depth -0.528 0	.633 -13 .444 -1	.336 -12. .241 -0.	334 0.5	351-11.952505-0.316	kld 0 0 0	
Random effects: Name Model AMP IID model i SPDE2 model						
Model hyperparamete	rs:					
Precision for AMP 2 Range for i Stdev for i GroupRho for i	310.425 2.606	359.183 113.884	025quant 0 1589.985 144 148.139 2 1.856 0.801	477.387 742 290.231 5 2.570	269.842 4414 589.320 254 3.563 2	mode 1.778 1.537 2.499).905
Huon Marin	e Park					
Fixed effects: mean intercept -10.042 year 0.064 depth 0.288 Random effects:	0.761 -1 0.748 -	1.725 -9 -1.563 ().123	quant mod 8.746 -9.81 1.367 0.24 1.490 0.33	8 0	
Name Model site IID model i SPDE2 model						
Model hyperparamet		cd	0.025quant	0 Squapt	0.075quant	
mode Precision for site	mean 18639.749		•	•	67238.34	345
0.299 Range for i	46.008	63.135	5.177	27.293	201.00	1
2.355 Stdev for i	0.306	0.318	0.029	0.213	1.15	
0.082 GroupRho for i 0.881	0.848	0.064	0.692	0.860	0.94	
Freycinet M	arine Park					

Fixed effe	ects:						
	mean	sd	0.025quant	0.5quant	0.975quant	mode	k1d
intercept					-7.409		
year	0.115	0.182	-0.241	0.114	0.475	0.113	0
depth	-1.999	0.331	-2.691	-1.984	-1.389	-1.955	0
	_						
Random eft							
Name	Mode1						

site IID model i SPDE2 model						
Model hyperparamete	ers: mean	sd	0.025quant	0.5quant	0.975guant	
mode Precision for site	18824.939		-	13412.414	67523.836	353
4.957 Range for i 8.374	21.081	6.510	11.15	20.134	36.487	1
8.374 Stdev for i 1.413	1.458	0.235	1.04	1.442	1.966	
GroupRho for i 0.873	0.842	0.064	0.69	0.853	0.935	

Flinders Marine Park

Fixed effects: sd 0.025quant 0.5quant 0.975quant mode kld mean intercept -10.747 0.584 -12.009-10.705 -9.717 -10.6170 -0.236 0.580 -0.202 0.812 -1.468 -0.134 0 year depth 0.140 0.573 -1.1060.185 1.142 0.279 0 Random effects: Mode1 Name site IID model i SPDE2 model Model hyperparameters: sd 0.025quant 0.5quant 0.975quant mean mode Precision for site 19001.910 18930.174 1308.513 13405.243 69420.697 358 8.637 59.696 Range for i 37.888 18.588 49.654 159.451 3 6.161 Stdev for i 1.229 0.475 0.446 1.191 2.252 1.061 GroupRho for i 0.845 0.066 0.683 0.856 0.938 0.878

No overall or marine park level trends were detected for unstalked crinoids. Also, no significant depth association was found.

2.5 Summary of significant linear trends for dominant morphospecies

Table 2.5.1 Summary of significant linear trends found for the dominant 37 morphospecies modelled.Green shading indicates a significant positive linear trend, red a significant negative linear trend.Unshaded cells indicate no linear trend was detected. Percentages in shaded cells are the magnitudeof the linear change expressed as the change in odds of presence per year. Shading in depth cellindicates whether significant association with depth were detected i.e. red = negative, associatedwith shallower depths, green = positive associated with deeper depths.

Morphospecies	All AMPs	Huon	Freycinet	Flinders	Beagle	Depth
Arborescent Grey		42%				
Arborescent Orange		104%				
Arborescent Orange Thin	42%			50%		
Ascidian Colonial Purple						
Bramble Coral				37%		
Branching Gray Fine Repent Like		91%	52%			
Bryozoa Soft (merged)	54%	78%	87%			
Bryozoa Stumpy Hard						
Calcareous Encrusting Red Algae		15%				
Coral Orange Solitary (Caryophyllia like)						
Cup Red Smooth						
Cup Yellow						
Encrusting Beige Oscula		54%				
Encrusting Beige Smooth			88%			
Encrusting Black	4%	128%	109%			
Encrusting Blue			577%			
Encrusting Light Orange						
Encrusting Orange				56%		
Encrusting Purple Lumpy						
Encrusting White			121%			
Encrusting White Lumpy			180%			
Encrusting Yellow Smooth			70%			
Epizoanthus sp		132%	72%			
Fan Pink	29%					
Gorgonian Red	78%		63%	76%		
Hydroid White	95%			38%		
Lumpy White	34%	31%				
Massive Blue Shapeless						
Massive Purple	27%					
Non-Calcareous Encrusting Red Algae						
Palmate Grey						
Purple Massive		91%				

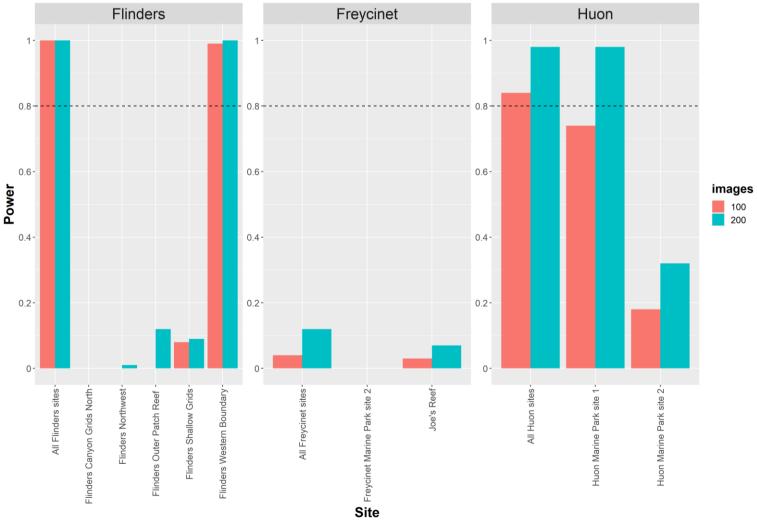
Repent Orange				
Repent Yellow	124%	39%	27%	
Simple Beige Lumpy				
Simple Beige Lumpy Shapeless				
Unstalked Crinoids				

For all marine parks significant linear decreases were observed for arborescent orange thin sponges, gorgonian red fans, and lumpy white and purple massive sponge morphospecies. Significant linear increases were observed for soft bryozoans, hydroid white, encrusting black sponges and fan pink sponges.

For Huon Marine Park increases were found over the survey period for erect structure forming species such as arborescent grey and orange sponges and soft bryozoa, as well as encrusting species such as encrusting beige oscula and encrusting black sponges and repent yellow, repent grey fine branching and Epizoanthus species. A small but significant increase in the cover of encrusting calcareous algae was also observed.

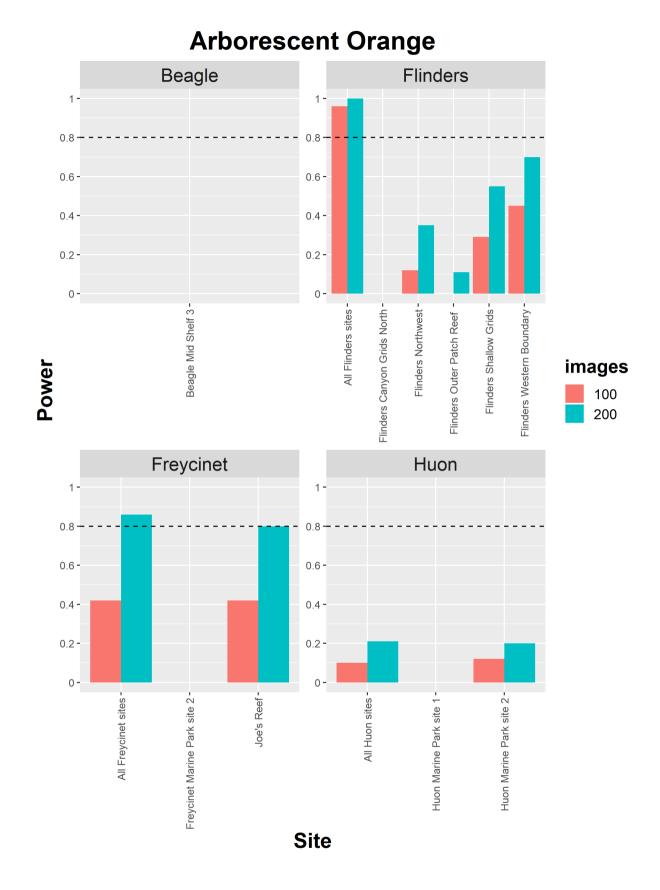
For Freycinet Marine Park linear increases in a number of encrusting sponge morphospecies were observed including beige smooth, black, blue (particularly at site 2), white, white lumpy and yellow smooth. Soft bryozoans were also noted to have increased in cover over the survey period. Decreases were observed in two repent sponges (yellow and branching grey fine) as well as Epizoanthus sp. Also, a strong decline in the cover of gorgonian red fans was observed.

For Flinders Marine Park linear increases were detected for encrusting orange sponges and the hydroid white morphospecies. Linear declines were observed for arborescent orange thin sponges, repent yellow sponges and two octocoral species: gorgonian red fans and bramble corals.

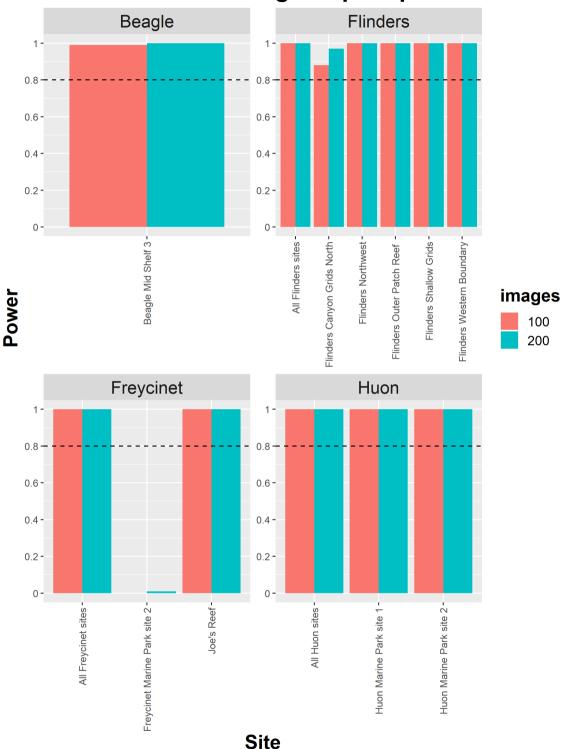

No evidence for significant linear trends were observed for Beagle Marine Park, although only two time points were available for a single site within this park.

Many morphospecies were associated with shallower depths (significant negative association with depth), with only stumpy bryozoa hard, lumpy white sponges and simple beige lumpy shapeless sponges being positively associated with depth.

2.6 Power analysis2.6.1 Power to detect a 50% decline in cover


For the simulation-based power analysis for a 50% decline in the cover of the Arborescent Grey sponge morphospecies it was found that high power could be achieved with both 100 and 200 images for both Flinders and Huon Marine Parks when all sites within the marine park were used as part of the analysis, but not for Freycinet Marine Park (Figure 3.6.1). When considering individual sites, high power could only be achieved at the Western Boundary site within Flinders Marine Park (both with 100 and 200 images), and only with 200 images at the Huon Marine Park site 1.

For the Arborescent Orange sponge morphospecies high power to detect the 50% decline could only be achieved at Freycinet Marine Park and Flinders Marine Park. 200 images were required at Freycinet with all sites combined or for the Joe's Reef site alone (Figure 3.6.2). At Flinders Marine Park high power could not be achieved at any individual site but could be achieved by combining the data from all sites with either 100 or 200 images.

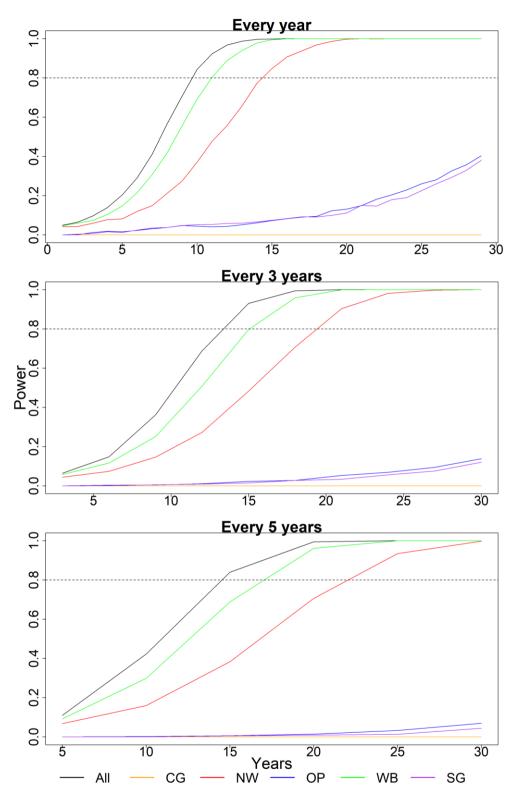


Arborescent Grey

Figure 2.6.1 Power to detect a simulated 50% decline in the Arborescent Grey sponge morphospecies. The dashed line is at 80% power.

Figure 2.6.2 Power to detect a simulated 50% decline in the Arborescent Orange sponge morphospecies. The dashed line is at 80% power.

All structure forming morphospecies


Figure 2.6.3 Power to detect a simulated 50% decline in all structure forming morphospecies. The dashed line is at 80% power.

High power could be achieved to detect a 50% decline in the cover of all structure forming species within all marine parks and at all sites regardless of whether 100 or 200 images were used (Figure 3.6.3).

2.6.2 *Power to detect change over a longer time frame*

2.6.2.1 Flinders: a 75% decline in Red Cup Smooth over 30 years

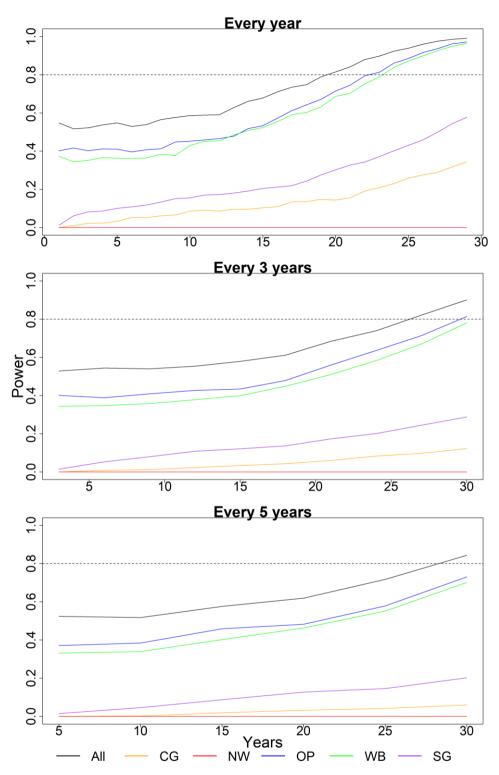

The linear-mixed-model estimate for temporal variance of the Red Cup Smooth morphospecies from the empirical data at Flinders Marine Park was 0, indicating high temporal stability. Detecting a 75% decline in the cover of the Red Cup Smooth morphospecies in Flinders Marine Park was achievable within the 30 year time frame when considering all sites, and also at the Western Boundary site and Northwest site (Figure 3.6.4). High power could not be achieved at the other sites. The highest power was always achieved when data from all sites was combined and was achievable in a shorter amount of time with annual revisits (8 years). Detecting the change with either 3 or 5 year revisits took 12 and 14 years respectively when using all the sites. Detecting the change at the Western Boundary site took between 10 (annual revisits) and 17 years (5 year revisit schedule). For the Northwest site achieving high power took between 15 years (annual revisits) and 22 years (5 year revisit schedule).

Figure 2.6.4 Power to detect a simulated 75% decline over 30 years in the Red Cup Smooth morphospecies in Flinders Marine Park. The dashed line is at 80% power. CG = Canyon Grids North, NW = Northwest, OP = Outer Patch Reef, WB = Western Boundary, SG = Shallow Grids.

2.6.2.2 Flinders: a 75% decline in Bramble Coral over 30 years

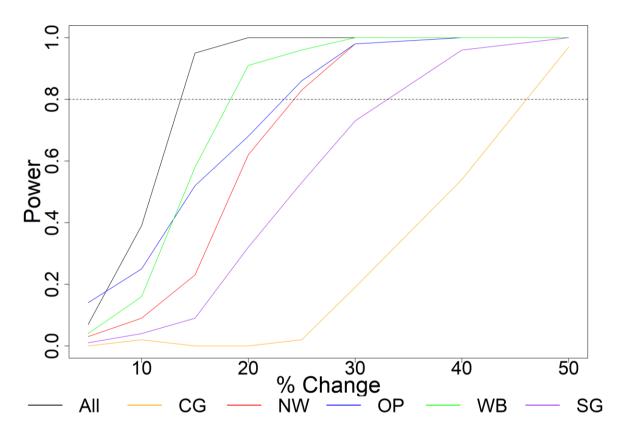
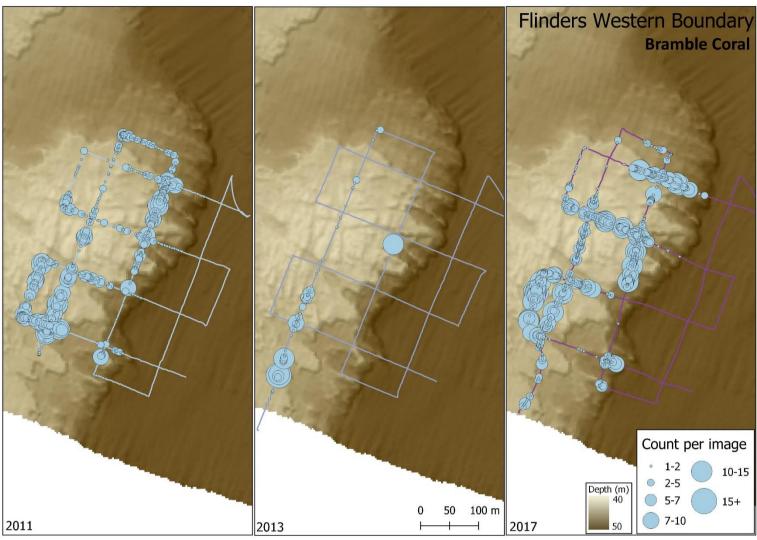

For Bramble Coral, the linear-mixed-model estimate for temporal variance in the empirical data was 0.37. High power could be achieved using all sites and all revisit schedules, but took much longer: 19 years, 26 years and 28 years for annual, 3 year and 5 year revisit schedules respectively (Figure 3.6.5). High power could also be achieved for the Outer Patch Reef and Western Boundary sites with annual revisits (approximately 22 years) and only for the Outer Patch Reef with revisits every 3 years at the 30 year mark. Results show that within a relatively high proportion (up to 60%) significant linear trends were often detected in the first 10 years of monitoring. These are likely to be "false positives" that are due to large fluctuations in cover that are the result of the high baseline variability that was incorporated.

Figure 2.6.5 Power to detect a simulated 75% decline over 30 years in the Bramble Coral morphospecies in Flinders Marine Park. The dashed line is at 80% power. CG = Canyon Grids North, NW = Northwest, OP = Outer Patch Reef, WB = Western Boundary, SG = Shallow Grids.

2.6.3 Power to detect different levels of change

Power to detect differing levels of change in all structure forming morphospecies within Flinders Marine Park using 200 images increased as the level of change increased with distinct differences in the level of change detectable between the different sites (Figure 3.6.6). The smallest level of change (15%) was detectable with high power when including all sites. For individual sites, levels of change detectable ranged between 20% (Flinders Western Boundary site) to 45% (Flinders Canyon Grids site). Lower levels of change were generally detectable in sites with higher cover of structure forming species in the last survey year: Flinders Western Boundary 11.5% cover, Flinders Northwest 5.6% cover, Flinders Outer Patch Reef 3.5% cover, Flinders Canyon Grids North 3.3% cover, Flinders Shallow Grids 2.0% cover. The exception to this pattern was the Flinders Canyon Grids North site, where structure forming species were more patchily distributed as they were generally associated with hard substrate on canyon wall features.

Figure 2.6.6 Power to detect simulated declines between 5% and 50% for all structure forming morphospecies in Flinders Marine Park using 200 images. The dashed line is at 80% power. CG = Canyon Grids North, NW = Northwest, OP = Outer Patch Reef, WB = Western Boundary, SG = Shallow Grids.


2.7 Targeted scoring 2.7.1 Flinders Western Boundary

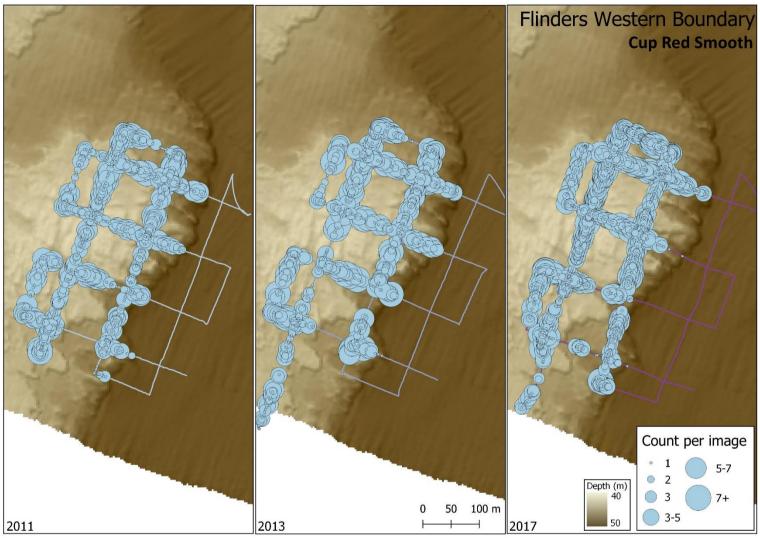
Subsetting to every fifth image at the Flinders Western Boundary site to create a set of nonoverlapping images along the entire length of the transect resulted in over 1500 images to score in each year (Table 3.7.1). Density of Cup Red Smooth sponges was found to be high and relatively stable, with on average greater than one sponge in each image in each year, and total counts in excess of 2000 when considering both unbleached and bleached sponges. Bleached sponges showed a large increase in mean numbers per image in 2017 compared to the two previous years.

Targeted scoring for the two selected morphospecies at Flinders Western Boundary took approximately 15-17 hours per year of imagery. As bramble coral colonies were often small, targeted scoring took considerably longer than scoring the Cup Red Smooth morphospecies. Scoring was done first for the bleached and unbleached cup sponges (approximately 5 hours per year) and then for the bramble corals (approximately 11 hours per year). On average, this equates to approximately 10 seconds per image for Cup Red Smooth and 23 seconds per image for Bramble Coral.

Year	Total images scored	Cup Red	Smooth	Cup Red Smooth Bleached		Bramble Coral	
		Count	Mean (± SD) per image	Count	Mean (± SD) per image	Count	Mean (± SD) per image
2011	1588	1840	1.16 ± 1.79	298	0.19 ± 0.56	1620	1.03 ± 2.19
2013	1507	1955	1.29 ± 2.06	244	0.16 ± 0.59	185	0.12 ± 0.91
2017	2233	2917	1.31 ± 1.97	774	0.34 ± 0.79	1904	0.85 ± 2.11

2.7.1.1 Bramble Coral

Figure 2.7.1 Map showing changes in count of Bramble Coral at Flinders Western Boundary using targeted scoring in each year surveyed.


Model-based estimates of trend: full data set

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant m intercept -4.152 0.174 -4.499 -4.150 -3.815 -4 year -0.097 0.168 -0.427 -0.096 0.232 -0 depth -2.195 0.157 -2.509 -2.194 -1.892 -2.	.147 0 .096 0
Random effects: Name Model i SPDE2 model	
Model hyperparameters: mean sd 0.025quant 0.5quant 0.975quant Range for i 22.55 1.946 18.94 22.484 26.568 Stdev for i 2.45 0.135 2.19 2.443 2.721 GroupRho for i -0.19 0.127 -0.44 -0.188 0.057	8 22.367 1 2.437

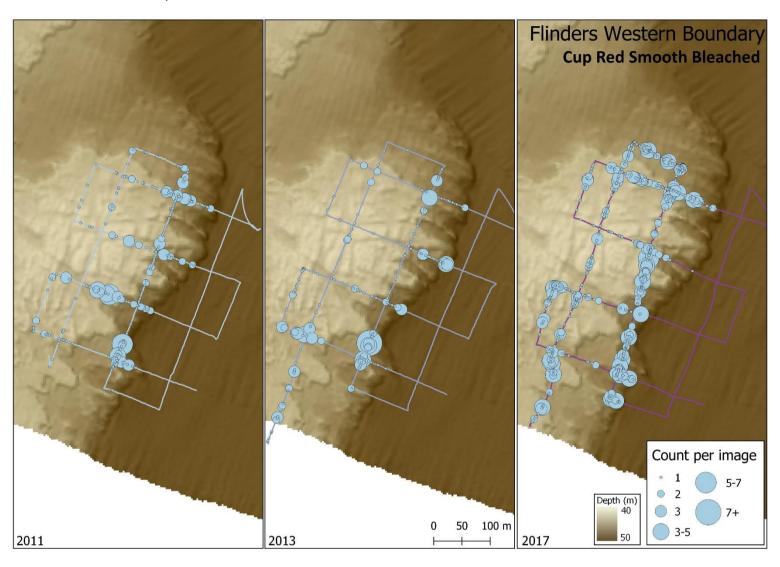
Model-based estimates of trend: 200 images

No significant linear trend was found when using the targeted scoring data for bramble coral, whether using the full number of targeted images, or a subset of 200 images.

2.7.1.2 Cup Red Smooth

Figure 2.7.2 Map showing changes in count of Cup Red Smooth at Flinders Western Boundary using targeted scoring in each year surveyed.

Model-based estimates of trend: full data set


Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -1.628 0.137 -1.897 -1.628 -1.361 -1.627 0 year -0.091 0.055 -0.198 -0.091 0.016 -0.091 0 depth -2.318 0.109 -2.534 -2.317 -2.104 -2.317 0
Random effects: Name Model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Range for i 27.446 2.611 22.754 27.289 33.009 26.944
Stdev for i 1.267 0.068 1.139 1.265 1.406 1.261
GroupRho for i 0.891 0.027 0.828 0.894 0.935 0.901

Model-based estimates of trend: 200 images

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept 33.432 1.623 30.258 33.427 36.629 33.418 0 year -0.091 0.055 -0.199 -0.091 0.017 -0.091 0 denth 0.772 0.037 0.772 0.772
depth -0.773 0.037 -0.845 -0.773 -0.702 -0.773 0
Random effects: Name Model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode Range for i 27.407 2.602 22.720 27.259 32.929 26.94
stdev for i 1.266 0.068 1.138 1.264 1.404 1.26
GroupRho for i 0.891 0.027 0.829 0.894 0.936 0.90

No significant linear trend was found when using the targeted scoring data for cup red smooth, whether using the full number of targeted images, or a subset of 200 images.

2.7.1.3 Cup Red Smooth Bleached

Figure 2.7.3 Map showing changes in count of Cup Red Smooth Bleached at Flinders Western Boundary using targeted scoring in each year surveyed.

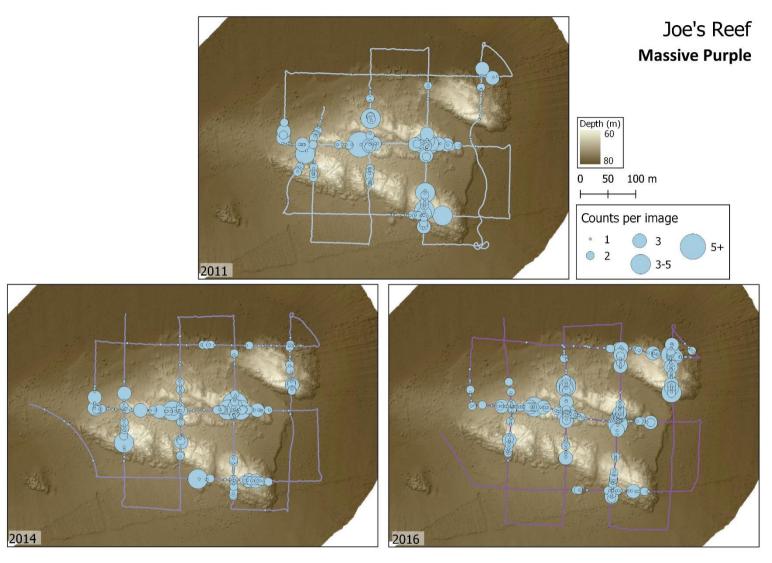
Model-based estimates of trend: full data set

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
intercept -3.182 0.232 -3.640 -3.181 -2.729 -3.179 0
year 0.285 0.094 0.100 0.285 0.470 0.285 0
depth -2.011 0.175 -2.356 -2.010 -1.671 -2.009 0
Random effects: Name Model i SPDE2 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Range for i 46.291 7.884 33.089 45.484 63.967 43.811
Stdev for i 1.519 0.121 1.297 1.513 1.771 1.501
GroupRho for i 0.869 0.036 0.788 0.873 0.927 0.881

Model-based estimates of trend: 200 images

Fixed effects: mean sd 0.025quant 0.5quant 0.975quar	nt mode kld
	97 27.226 0
vear 0.286 0.095 0.100 0.286 0.42	72 0.286 0
depth -0.671 0.059 -0.787 -0.671 -0.55	57 -0.671 0
Random effects: Name Model i SPDE2 model	
Model hyperparameters:	
mean sd 0.025quant 0.5quant 0.975 Range for i 46.46 7.875 32.837 45.831 6 Stdev for i 1.52 0.123 1.297 1.520 GroupRho for i 0.87 0.036 0.785 0.875	5quant mode 53.753 44.620 1.781 1.510 0.926 0.884

A significant increase in the number of bleached cup red smooth individuals was found when using both the full number of targeted scoring images or a subset of 200 images. The plot (Figure 80) shows that there was a particularly marked increase between 2013 and 2017. The magnitude of change when using either all images or 200 images was similar (a 0.285 increase in log count versus a 0.286 increase), suggesting that 200 images has provided sufficient information.


2.7.2 Joe's Reef

Year	Total images scored	Massive Purple		Black Coral	
		Count	Mean (± SD) per image	Count	Mean (± SD) per image
2011	1783	311	0.17 ± 0.59	12	0.01 ± 0.11
2014	1488	370	0.25 ± 0.64	28	0.02 ± 0.15
2016	2285	524	0.23 ± 0.61	54	0.02 ± 0.19

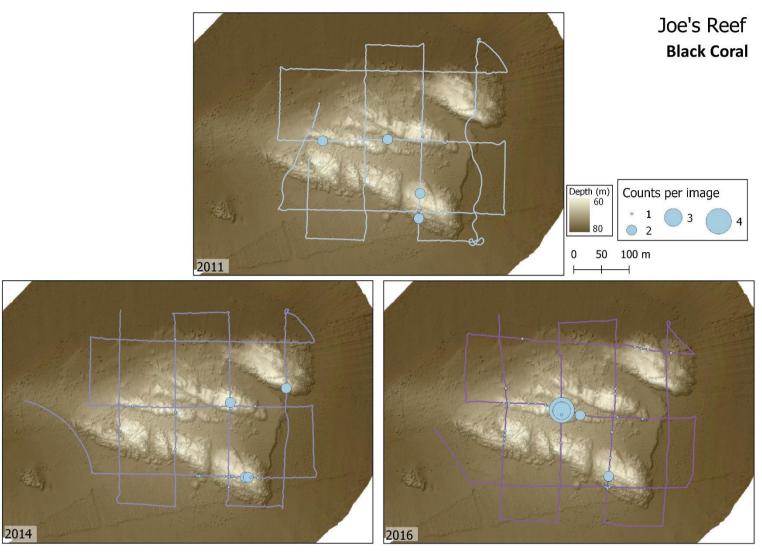
 Table 2.7.2 Summary of targeted scoring at Joe's Reef.

Targeted scoring for the two selected morphospecies at Joe's Reef took approximately 10-11 hours per year of imagery. As black coral colonies were quite rare, targeted scoring was relatively quick (approximately half an hour per year) and could be completed alongside scoring the massive purple sponge morphospecies. On average, this equates to approximately 21 seconds per image.

2.7.2.1 Massive Purple

Figure 2.7.4 Map showing changes in count of Massive Purple sponges at Joe's Reef using targeted scoring in each year surveyed.

Model-based estimates of trend: full data set


Fixed effects:					
me	an sd (0.025quant	0.5quant	0.975quant	mode kld
intercept -3.6		-4.105	-3.622	-3.143	
year 0.2	32 0.093	0.050	0.232	0.416	0.232 0
depth -1.4	92 0.129	-1.746	-1.491	-1.239	-1.491 0
Random effects Name Mode i SPDE2 mo	1				
Model hyperpar	ameters:				
Je Po	mean	sd 0.025c	quant 0.5c	quant 0.9750	quant mode
Range for i	51.942 9.				2.716 49.205
Stdev for i		.145 1	L.267 1	1.525 1	L.837 1.510
GroupRho for i	0.899 0.	.030 ().827 ().904 (0.946 0.912

Model-based estimates of trend: 200 images

Fixed effects: mean sd 0.025quant 0.5quant 0.975quant mode kld intercept -0.357 29.528 -58.340 -0.354 57.556 -0.345 0 year 0.005 0.015 -0.024 0.005 0.034 0.005 0 depth -0.154 0.018 -0.190 -0.154 -0.119 -0.154 0			
Random effects: Name Model i SPDE2 model			
Model hyperparameters: mean sd 0.025guant 0.5guant 0.975guant mode			
Range for i26.0920.87824.67326.06127.57424.848Stdev for i0.6480.1130.4450.6430.8860.637GroupRho for i0.8400.0660.6810.8510.9350.872			

A positive linear trend was found when analysing all targeted scoring images for massive purple sponges at Joe's Reef equating to an increase in the log count of 0.232 per year. However, analysis of the reduced data set of 200 images found no significant increase through time.

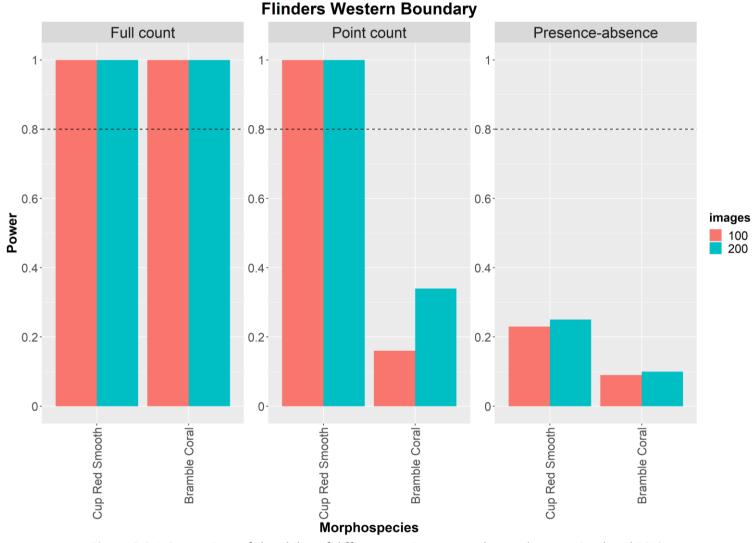
2.7.2.2 Black Coral

Figure 2.7.5 Map showing changes in count of Black Coral at Joe's Reef using targeted scoring in each year surveyed.

Model-based estimates of trend: full data set

Fixed effects: mean sd 0.025guant 0.5guant 0.975guant mod	e kld
intercept -6.772 0.258 -7.307 -6.761 -6.295 -6.74	
year 0.607 0.162 0.297 0.604 0.935 0.59	8 0
depth -1.544 0.173 -1.896 -1.539 -1.216 -1.53	1 0
Random effects: Name Model i SPDE2 model	
Model hyperparameters:	
	mode
Range for i 7.782 2.139 4.476 7.478 12.815 6	
Stdev for i 1.723 0.225 1.320 1.710 2.201 1	
GroupRho for i 0.847 0.062 0.696 0.857 0.937 0	.877

Model-based estimates of trend: 200 images


Fixed effects: mean sd 0.025guant 0.5guant 0.975guant mode kl	ld
intercept -7.676 31.405 -69.337 -7.676 53.926 -7.674	Ő
year 0.008 0.016 -0.022 0.008 0.039 0.008	0
	0
Random effects: Name Model i SPDE2 model	
Model hyperparameters:	
	mode
Range for i 202.154 301.493 8.452 109.920 960.858 20	0.563
	0.565
GroupRho for i 0.844 0.066 0.685 0.856 0.938 0	0.877

A positive linear trend was found when analysing all targeted scoring images for black coral at Joe's Reef equating to a 0.607 increase in log counts per year. Analysis of the reduced data set of 200 images found a significant increase, but of a smaller magnitude of an increase of 0.008 in the expected log count per year. Black corals are generally long-lived and an increase in abundance such as this over a short time is unexpected. However, overall counts were very low (Table 3.7.2), and results based on such sparse data are likely to be unreliable.

2.8 Comparison of scoring approaches 2.8.1 Flinders Western Boundary

Power simulations using different scoring approaches at the Flinders Western Boundary site showed that high power was achievable for detecting 50% declines in Cup Red Smooth and Bramble Coral when using the full count approach with either 100 or 200 images (Figure 3.8.1). High power was achievable when using the point count approach for Cup Red Smooth with both 100 and 200 images but could not be achieved for Bramble Coral. High power was not achievable for either morphospecies when using the presence-absence approach.

Based on average image scoring times (see previous section), scoring 100 images with the full count approach would take approximately 17 minutes for Cup Red Smooth and approximately 39 minutes for Bramble Coral.

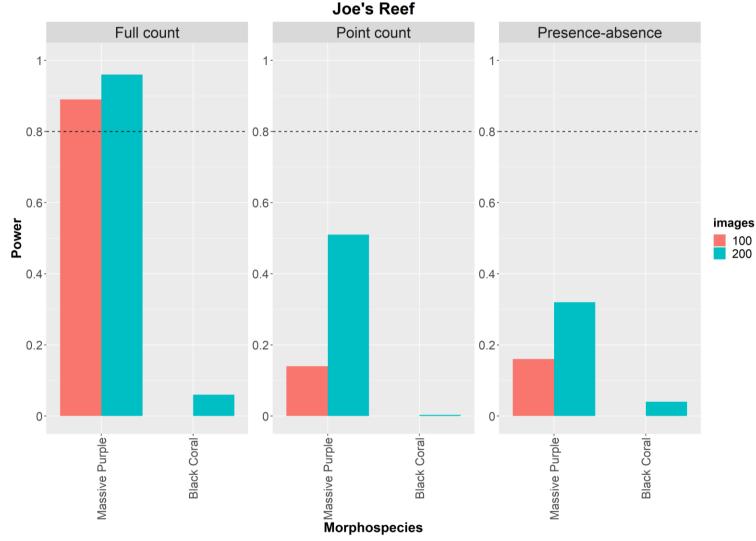


Figure 2.8.1 Comparison of the ability of different scoring approaches to detect a simulated 50% decline in Cup Red Smooth and Bramble Coral at Flinders Western Boundary. Dashed line is at 80% power.

2.8.2 Joe's Reef

Power simulations using different scoring approaches at Joe's Reef showed that using the full count approach yielded high power to detect a 50% decline in cover of Massive Purple sponges when using either 100 or 200 images (Figure 3.8.2). High power could not be achieved using either the point count or presence-absence approaches for Massive Purple sponges. For Black Coral, high power to detect a 50% decline was not achievable with any of the approaches tested.

Based on average image scoring times (see previous section), scoring 100 images with the full count approach would take approximately 35 minutes for Massive Purple and only a small amount of time to additionally score Black Coral.

Figure 2.8.2 Comparison of the ability of different scoring approaches to detect a simulated 50% decline in Massive Purple Sponges and Black Corals at Joe's Reef Dashed line is at 80% power.

3 Discussion

This project provides the first insights into the spatial distribution and temporal dynamics of deeper (40-200 metre) reef sessile algal and invertebrate communities in shelf waters around Tasmania over a ten-year monitoring period. A time series of image-based benthic surveys in Australian Marine Parks utilising the Integrated Marine Observing System (IMOS) Autonomous Underwater Vehicle (AUV) facility has provided novel insights into the communities present across a large spatial extent, and how these communities and morphospecies within them change through time.

Multivariate analysis revealed that there were no significant shifts in overall community composition in each marine park over the survey period; however, several individual morphospecies underwent significant change. While the common assumption is that deeper water marine species are relatively stable compared to shallower water species, this study shows that a subset of deeper water species around Tasmania exhibit considerable fluctuations in abundance over time periods less than ten years. Understanding these dynamics has important implications for the management and ongoing monitoring of these communities. In particular, understanding "natural" or "baseline" variability is crucial to separate trends that are due to pressures of interest from natural fluctuations in abundance and in aiding the selection of indicators.

Power analyses conducted as part of this report show that given sufficient sampling, changes in the cover of more dominant morphospecies can be detected given current scoring protocols. Considerable improvements in the ability to detect change can be made by taking a targeted scoring approach where complete enumeration of individuals in a subset of imagery is completed. Through targeted scoring it was also found that a cup sponge morphospecies in Flinders Marine Park experienced a significant bleaching event between surveys in 2013 and 2017 during a period of extreme warming, suggesting that scoring of the condition of morphospecies may provide an additional or even improved indicator of change. Below, the results of the analyses conducted are discussed in more detail in relation to the ongoing monitoring and management of deeper water sessile communities across the SE Network.

3.1 Variability in cover of dominant morphospecies

Understanding the variability in the abundance of potential indicators is crucial to disentangle natural background variability from changes from anthropogenic sources such as fishing pressure or climate change. The population variability (PV) measure used to examine variability in the cover of morphospecies in the time-series to date provided a useful means of ranking morphospecies in terms of variability. PV values were often considerably different between different marine parks, leading to higher overall measures of PV when averaging across all parks. This indicates different processes operating at a local scale driving variability and could be the result of localised recruitment events or competition or localised pressures on populations. Plots of the raw percent cover data sometimes suggested between site differences within a marine park, indicating that different processes may be acting on an even more localised level. However, by considering PV across all parks, morphospecies with lower overall PV values can be considered those that are likely to be more stable at least over the decadal time scale that the monitoring program has covered to date. This information can be used in the selection of indicators (see section below) and should be updated as more data becomes available. It should be noted however that assessments of variability are being made under conditions that are likely to already be outside longer-term historical norms, with significant warming events occurring over recent decades (Oliver et al. 2018), a situation that is

likely to continue (Oliver et al. 2014). Understanding what is likely to be natural variability and what is being driven by other pressures will be challenging and require the incorporation of additional environmental and monitoring data such as the data relating to warming and storm events, and a longer time-series of monitoring data.

3.2 Linear trends in the cover of important morphospecies

Several significant linear trends in the cover of individual morphospecies were found when considering broad changes across the entire SE Network. Of note was the large increase in cover of soft bryozoa and decrease in the cover of the widespread red gorgonian fan. The increase in the cover of soft bryozoa was largely driven by the positive trends observed at Huon and Freycinet Marine Parks. At Huon Marine Park the growth of individual bryozoan colonies was observable across the time series, with low "fuzzy" cover in 2009, intermediate growth in 2010 and large structured colonies in 2014. Linear trends were not found in Flinders Marine Park; however raw plots of the data and the imagery generally show a low cover in 2011, high cover in 2013 and lower cover in 2017 which is not captured by a linear trend. This points to the likelihood of soft bryozoans having a short life cycle on the order of 5-10 years, and the current time-series is only capturing a section of this natural cycling of abundance. Further clarification of this observation is required with ongoing monitoring as bryozoa form a dominant and important component of the ecology of all deeper water reefs across the SE region. The gorgonian red morphospecies (likely to be Pteronisis sp.; see Alderslade 1998) has been previously observed to have fluctuating cover on short time scales of 5-10 years at other locations (Lab 2011, Perkins et al. 2017). The overall linear decline detected was driven by large declines in Freycinet Marine Park at Joe's Reef and across sites at Flinders Marine Park. Once again, this could be due to the time-series only capturing a portion of natural cycling of abundances and recovery . A study examining the size structure of the population through time would be informative, as there appears to be a lack of information regarding growth rates of Pteronisis sp. in the literature. Current observations need confirmation with ongoing surveys as this morphospecies may also be susceptible to warming, as temperate octocorals elsewhere have been noted to have large die-offs in warming events (e.g. Garrabou et al. 2009, Pivotto et al. 2015). The large increase in hydroid white and decreases in massive purple, arborescent orange thin and lumpy white sponge morphospecies should be continued to be monitored to establish if declines are ongoing.

The extent to which marine park-level significant trends are part of natural cycling or succession in the abundance of different morphospecies or reflect longer term trends related to anthropogenic disturbance is currently unclear. For example, Huon Marine Park displayed significant increases in a number of structure forming species such as erect sponges and soft bryozoa which may be the result of recovery from prior disturbance through storm events. Generally, the height of the cover of many morphospecies at Huon Marine Park is low (see example pictures in Appendix B) and suggests frequent disturbance of these shallower sites by storm events. For Freycinet Marine Park, significant increases in a number of encrusting sponge morphospecies, particularly encrusting blue sponges at Freycinet Marine Park site 2, and the afore-mentioned increase in the cover of soft bryozoa and decrease in cover of red gorgonians may also reflect natural cycling in abundance of these morphospecies. Also, the significant declines in both gorgonian red and bramble corals at Flinders Marine Park could be natural cycling due to short life cycles for these morphospecies. However, as previously mentioned, corals may be more susceptible to warming events that may be altering the extent of natural variation. Disentangling natural variability from anthropogenic disturbance is likely

to be challenging and will require incorporation of new knowledge of these morphospecies and environmental data as it is collected.

It should be re-emphasized here that only linear trends were tested for during this project, and the conclusions that can be drawn with only three time points are limited. Non-linear trends such as low-high-low or high-low-high covers over the survey period may be biologically significant and indicate short-term boom-bust life cycle histories or frequent disturbances. While non-linear trends can be modelled, doing so with three time points will lead to over-fitting. It is therefore recommended that modelling of these kind of trends be conducted once more data has been collected.

The spatio-temporal modelling approach introduced in this project provides several advantages in detecting trends through time and should continue to be used within the AUV monitoring program. The power to detect change is greatly enhanced by using images as the base level of replication rather than aggregating data up to the site level (Perkins et al. 2020a). However, images that are located closer together in space are unlikely to be independent and models must account for the inherent spatial autocorrelation when using the resultant data in this way. Also, when modelling time-series, temporal correlation is likely to exist between observations through time. The spatiotemporal models used in this project account for both these factors, and thus provide unbiased estimates of trend and the associated error. Furthermore, this modelling approach offers the advantage of being able to deal with data that has come from surveys that are not well aligned such as the change in design over time at Huon Marine Park.

3.3 Choosing indicators

Information regarding the spatial distribution and temporal variability of morphospecies gained through work conducted in this project has provided vital information to aid in the selection of indicators. This information in combination with ecological knowledge of the study system is used here to recommend some potential indicators and identify knowledge gaps to aid in selecting indicators (Appendix C). Suggested indicators are made based on a number of desirable properties: occurrence across a large number of sites, high relative abundance, low temporal variability (information gained from PV analysis conducted in this study), whether they are long-lived; and whether they are likely to respond to pressures of interest such as warming events, recovery from historical trawling/potting and storm events. It is also noted whether suggested indicators are likely to be easy to identify using artificial intelligence or machine learning algorithms that are likely to be developed soon. Finally, potential indicators are suggested as either widespread, in that they are distributed across the SE Network and potentially beyond, or whether they are more localised. For localised indicators it is also noted which marine parks they occur in and the number of sites across which they occur in each park. This list is not intended to be exhaustive, but to provide a starting point for the selection of potential indicators identified through the present work, some of the considerations that should be taken into account and where there are current knowledge gaps to provide focus for future research.

The power simulations conducted in this study highlight the importance of some of the aforementioned desirable properties of indicators. Simulated fifty percent declines for morphospecies with low relative abundance such as black coral at Freycinet Marine Park, arborescent orange sponges in Huon Marine Park or arborescent grey sponges at Freycinet Marine Park could not be detected with point scoring with 200 images. However, increasing scoring from 100 to 200 images resulted in high power for arborescent grey at Huon Marine Park site 1 and arborescent orange sponges at Joe's Reef. Both these site-level percent covers were approximately 0.5%, suggesting this might the minimum site-level abundance for detecting a 50% change with 200 images. When considering more abundant indicators, such as grouping all structure forming morphospecies, lower levels of change could be detected such as a 15% decline when grouping data from all sites in Flinders Marine Park. These findings should be further explored with similar analyses once indicators are chosen.

Indicators that are widespread allow the incorporation of information from multiple sites which can vastly improve the power to detect change (Andersen et al. 2019, Perkins et al. 2020b). For all power analyses conducted, modelling data from multiple sites greatly improved power, sometimes allowing for high power to detect change across a marine park where individual site-level changes could not be detected with high power (e.g. 50% declines in arborescent orange sponge at Flinders Marine Park); or allowing detection of longer-term chronic declines in a shorter amount of time such as detecting the simulated 75% decline in red cup smooth sponges at Flinders Marine Park. Indicators that are relatively abundant at a site-level and are present at many sites should therefore be preferred. There were several sites where surveys had not yet been repeated and so were not included in this project. It is important that as imagery is scored at these sites that knowledge of the spatial distribution of morphospecies is built upon as having information from more sites will improve the power to detect change. Furthermore, where it makes sense indicators can be made from grouped morphospecies, such as grouping all structure forming morphospecies to detect the impacts of trawling. The power analysis conducted in this project showed that detecting changes in such grouped indicators that provide an abundant and widespread coverage is achievable with high power and the lowest sampling effort tested. However, such grouping is not always appropriate as species are likely to have differing responses to some pressures such as warming events.

Indicators are typically evaluated through comparison to reference sites or by measuring their response along stress gradients, or a combination of both (Hayes et al. 2015). For the sites in the AUV program, there tends to be a lack of reference sites, or where possible reference sites outside marine park boundaries do exist there may be a lack of spatially explicit knowledge regarding the extent of disturbances such as trawling impacts. Ideally, appropriate outside reference sites should be developed to allow reporting on the effects of protection, as without knowledge about the rates of recovery from disturbances such as trawling it will be difficult to separate protection effects from other pressures. However, the large spatial spread of the marine parks in the SE Network provides sufficient scope to test pressure gradients. For example, it would be expected that climate change impacts through the increased influence of the East Australian Current (EAC) may first impact sites in the north such as Flinders and Beagle Marine Parks. Therefore, having sites spread over the extent of the east coast of Tasmania allows the testing of warming events over a large pressure gradient and analyses could be tied to oceanographic observations.

The finding of a large increase in bleaching of the cup red smooth morphospecies at the Flinders Western Boundary site is significant as bleaching in temperate sponge species has been rarely reported (but see Cerrano et al. 2001). This indicates bleaching or other changes in the condition of morphospecies may be an important potential indicator as an early warning of warming impacts on deeper water communities. Bleaching of sponges has been reported in tropical settings, and has been linked to warming effects on sponges that have symbiotic relationships with organisms such as cyanobacteria or photosynthetic algae (Usher 2008, Miller and Strychar 2010). The waters northeast of Tasmania were noted to have undergone a marine heatwave event in the summer of 2015/16 (Oliver et al. 2018), prior to the survey which revealed a large increase in the number of bleached individuals. While the relationship between increased bleaching in cup red smooth sponges and this heat wave event is only correlational, further investigation of the potential for bleaching in sponges is warranted. Indeed, this morphospecies is widespread, occurring in all marine parks apart from data collected at Beagle Marine Park so far. This indicates that this morphospecies or other morphospecies that may be subject to bleaching could be used to examine impacts over a gradient of warming. This should be a priority for future research.

Temperate coral species elsewhere have been noted to be particularly susceptible to warming events and other anthropogenic pressures (e.g. Garrabou et al. 2009, Pivotto et al. 2015, Cerrano et al. 2019), indicating that coral morphospecies in the SE Network may be useful indicators. The gorgonian red octocoral is widespread, occurring across the entire SE Network. However, this morphospecies displayed large fluctuations in cover including an overall decline as well as significant declines detected in Flinders and Freycinet Marine Parks, while cover remained stable in Huon Marine Park. Similarly, bramble coral which was found in Flinders and Freycinet Marine Parks showed a decline in Flinders Marine Park while remaining relatively stable at Freycinet Marine Park. Targeted scoring of bramble coral at the Flinders Western Boundary site revealed a rebounding in abundance in 2017 after a strong decline between 2011 and 2013. This implies that the extreme warming event in 2015/16 did not have a strong impact on bramble coral. It is currently unclear whether these two relatively abundant coral species are being impacted by warming or whether fluctuations seen to date are part of natural cycling of abundances with these morphospecies being relatively short-lived. A study examining the size structure of these populations over time would be informative in helping understand growth rates and population dynamics. The power analysis for bramble coral at Flinders Marine Park made the assumption that variation seen to date was natural, which resulted in the simulated "real" effect taking a long time to detect with high power and at a stage when this morphospecies may already have been in critical trouble. Therefore, ongoing monitoring of changes in abundance is warranted for these two species, with current evidence suggesting they may not have desirable properties as indicators. Other large coral species such as the black corals at Joe's Reef, or the large gorgonian fans (Mopsella sp.) in Flinders and Beagle Marine Parks are not sufficiently abundant to track changes in cover or abundance through time. For example, power analysis at Joe's Reef for black corals suggests that high power would be difficult to achieve due to the low number of observations. If these species are in fact suitable indicators, then it is likely that targeted scoring of all individuals and observation of condition of individual colonies may be the best path forward.

3.4 Scoring approaches and monitoring design

The different scoring approaches trialled in this project have highlighted that both the quantity and quality of data generated from the vast amount of AUV imagery available can have dramatic impacts on monitoring outcomes and ecological insights into important dynamics. The targeted scoring of all individuals across non-overlapping images at two sites provided additional insights with the conclusions drawn being different when compared to the data from a point scoring approach. For example, power analyses comparing different point scoring approaches highlighted that targeted scoring consistently outperformed point scoring approaches.

The point scoring approach used for the majority of the scoring completed in this project is useful to provide an initial quantitative description of the important morphospecies present at a site and to track changes in the more abundant morphospecies or in multivariate assemblages. However, point scoring is quite labour-intensive and a large amount of time is spent labelling non-biological

categories such as sand, searching the database for rarer species or adding new species to the database or labelling points as "matrix" categories as the image resolution does not allow further classification. For example, more than half the points within Huon Marine Park scored during the project were placed into matrix categories due to low and often non-distinguishable cover of encrusting organisms. While these categories are important components of the ecosystem, it is unlikely they will be monitoring targets. Furthermore, randomly allocated points may often fail to land on species that are of high conservation value, particularly if they are small or rare. Also, as imagery is subset, the random subset of imagery may fail to capture important species. For example, no black corals were observed at Joe's Reef in 2014 with the point scoring approach.

A comparison of the power of different potential scoring approaches revealed that the targeted scoring of all individuals (a "full count" approach) consistently outperformed both a point count and presence-absence approach. While this result is intuitive, as more information is contained in a full count approach, the magnitude of this difference was surprising. The full count approach was able to detect a 50% decline for all targeted morphospecies with either 100 or 200 images, except for the rare black coral. Point scoring was only able to detect the simulated 50% decline for the most abundant morphospecies tested (cup red smooth at Flinders Western Boundary) but could be achieved with either 100 or 200 images. Presence-absence scoring, while appealing due to the speed it may be able to be conducted, was unable to detect any of the simulated changes with high power. This highlights the advantage of a targeted full count approach, which should be the preferred method for individual indicator morphospecies moving forward. Another bonus of targeted scoring is that it generates more data for individual morphospecies that can be used to train machinelearning algorithms for future automated scoring. Further simulation work could be conducted to establish the effectiveness of this approach for other morphospecies. Given the current results using just 100 images, it seems likely that this approach will be useful for a wide range of morphospecies, even those that have been previously considered rare due to low cover (< 0.5%). For extremely rare morphospecies such as black corals at Joe's Reef, current counts within imagery are insufficient to detect declines in abundance. Where morphospecies are deemed to have high conservation value, such as black corals or the large gorgonians found in Flinders and Beagle Marine Parks, additional survey work could be conducted such as more AUV imagery collected over a larger extent of the reef, or the use of other technologies such as remotely operated vehicles (ROVs). Alternatively, for rarer but potentially susceptible morphospecies, the condition of individuals seen in imagery could be used as an index of impacts.

The time taken to complete different scoring approaches can allow a cost-benefit comparison. Power analysis showed that 200 images are likely to be necessary for detecting changes of 50% in cover of morphospecies with around 0.5% cover. During the project, experienced scorers averaged 5-7 minutes per image (with 25 points), meaning that scoring 200 images at a site takes approximately 17 – 24 hours of scoring. Targeted scoring of every non-overlapping image (1500-2200 images) took between 5 hours (all cup red smooth sponges at Flinders Western Boundary) to 11 hours (bramble coral at Flinders Western Boundary. The smaller bramble coral colonies required scanning through each image, and therefore took considerably longer. This suggests that 3-5 morphospecies could be scored across all imagery in the same amount of time as point scoring of all morphospecies with 200 images. However, modelling using 200 images with targeted scoring provided similar conclusions as all targeted images for the bleaching event of cup red smooth sponges, suggesting that a reduced number of images could be scored with targeted scoring and significant changes could still be detected. Indeed, the power comparing the different scoring approaches suggests that even 100 images with targeted is likely to detect a 50% decline. Average scoring times per image suggest that 100 images could be scored in between 17 minutes per year (cup red smooth sponges at Flinders Western Boundary) to 39 minutes (bramble coral at Flinders Western Boundary). The clear advantages of targeted scoring in improving the power to detect change, and the minimal comparative time taken to score in this way suggests that this approach should be adopted for identified target indicators moving forward. Point scoring could still be continued and may be useful for detecting large scale shifts in the cover of individual morphospecies, multivariate changes in assemblages or the incursion of new morphospecies such as invasive species that may be missed otherwise. It is therefore suggested that a hybrid approach be adopted moving forward to allow a "best of both worlds" scenario. The amount of effort devoted to each approach can be assessed once indicators have been chosen.

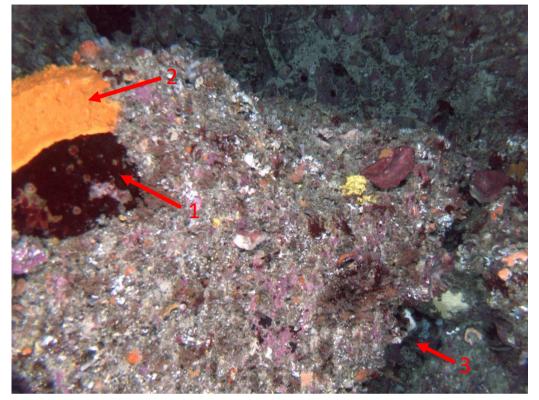
Power analysis conducted in this project and elsewhere (see Urguhart et al. 1993, Urguhart and Kincaid 1999, Perkins et al. 2017, Andersen et al. 2019, Perkins et al. 2020b) suggests that annual revisits to sites are not necessary to detect longer-term trends in abundance. The power to detect trends depends on a complex interplay between the magnitude of change, sampling variability, the number of sites and the variability in change between sites. Generally, more sites have been found to increase the power to detect trends (e.g. Andersen et al. 2019, Perkins et al. 2020b); however, differences in the trend between sites can also play a significant role (Sims et al. 2007). The results of power analysis in this project show that where trends are consistent, having more sites provides a significant improvement in power. This is also an important consideration when selecting indicators, as those that occur across a larger number of sites will provide a better means of assessing regional trends. Ultimately, temporal and spatial revisit plans must be balanced within budgetary constraints, but the results reported here and elsewhere show that while annual revisits are likely to detect changes in a shorter amount of time, less frequent revisits will typically detect change within management relevant timeframes. Further work exploring this interplay and incorporating knowledge of variability for selected indicators across sites and marine parks would be informative in directing future resources and sampling effort.

Recommendations

- Suggested indicators for ongoing monitoring of the SE Network (widespread indicators) and
 individual marine parks (localised indicators) are given in Appendix C. These indicators were
 selected based on a number of desirable properties: occurrence across a large number of
 sites, high relative abundance, low temporal variability (information gained from PV analysis
 conducted in this study), whether they are long-lived, whether they are likely to respond to
 pressures of interest such as warming events, recovery from historical trawling/potting and
 storm events, and whether they are likely to be easily identified using artificial intelligence
 or machine learning algorithms. Suggestions are based on current knowledge, and this list
 should be updated as new data is acquired regarding the spatial extent, temporal variability
 and response to pressures.
- Targeted scoring of all individuals should be the preferred method of image annotation for future selected indicators as it provides a much higher probability of detecting changes.
 Further exploration of the necessary sampling effort using this approach should be conducted once indicators are selected, but current work suggests that 100 images of targeted scoring may be sufficient for reasonably abundant morphospecies and can be completed in a short amount of time.
- Further exploration of correlation between environmental data and patterns in the abundance of morphospecies should be conducted to allow the effects of perturbations such as warming events or storms to be separated from background variability.
- Particular attention should be given in future monitoringa efforts to morphospecies where significant linear trends have been identified in this project to establish whether trends continue or are part of longer-term natural cycling.
- Effort is made to score currently unscored sites that were not included in this project due to a lack of repeat surveys. Power analysis conducted in this project and elsewhere suggest that the ability to detect changes is greatly improved by incorporating more sites where an indicator is present in sufficient abundance, and therefore knowledge of the spatial distribution of morphospecies across currently unscored sites will help with the planning of ongoing monitoring efforts.
- Power analyses such as those conducted in this project should be done under a variety of scenarios for chosen indicators to ensure sampling designs are adequate to detect likely levels of change.
- The modelling approach used in this project should continue to be used for ongoing analysis of AUV imagery as it accounts for spatial and temporal correlation, thereby providing unbiased estimates and a higher probability of detecting change when it occurs.

• Effort should be made to establish suitable reference sites outside Marine Parks and to quantify impacts in these sites to allow a comparison of how the protection offered by marine parks differs from impacted sites.

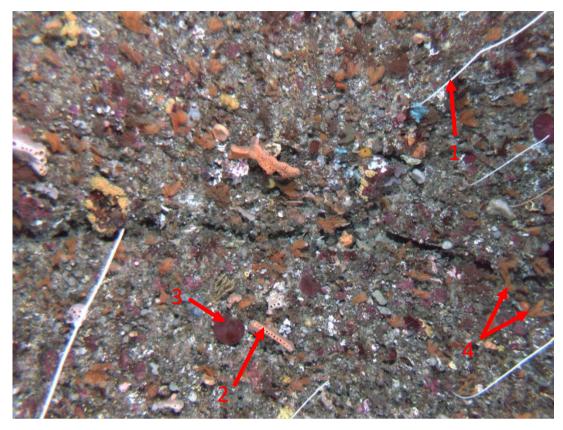
Appendix A: Table of all AUV sites in the SE Marine Parks Network

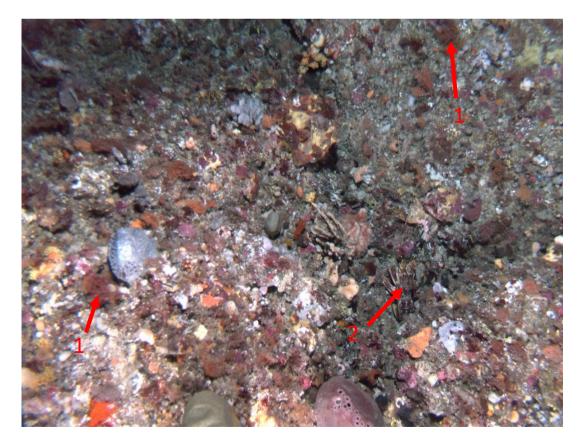

AMP	Site	Years surveyed	Depth range (m)		
Huon	Huon MP site 1	2009, 2010, 2014	45-71		
Huon	Huon MP site 2	2009, 2010, 2014	47-72		
Huon	Huon MP outside	2009	45-71		
Freycinet	Joe's Reef	2011, 2014, 2016	59-83		
Freycinet	Freycinet MP site 2	2009, 2010, 2012, 2014, 2016	93-100		
Freycinet	Freycinet MP site 1	2009, 2010, 2012, 2014, 2016	87-94		
Freycinet	Freycinet MP Sand	2009	76-82		
Freycinet	Freycinet MP Patch Reef	2009	98-118		
Freycinet	Freycinet MP Offshore	2009	85-99		
Flinders	Flinders Northwest	2013, 2017	41-45		
Flinders	Flinders Outer Patch Reef	2011, 2013, 2017	75-94		
Flinders	Flinders Canyon Grids North	2011, 2013, 2017	112-181		
Flinders	Flinders Shallow Grids	2011, 2013, 2017	62-78		
Flinders	Flinders Western Boundary	2011, 2013, 2017	43-52		
Flinders	Flinders East Shelf	2013	64-92		
Flinders	Flinders Canyon Grids South	2011	120-216		
Flinders	Flinders Canyon Grids site 2	2011	123-155		
Beagle	Beagle Mid Shelf 3	2017, 2018	57-65		
Beagle	Beagle Mid Shelf 4	2017	57-65		
Beagle	Beagle Mid Shelf 8	2017	63-67		
Beagle	Beagle Mid Shelf 10	2018	58-65		
Beagle	Beagle Mid Shelf 11	2018	53-62		
Beagle	Beagle Mid Shelf 12	2018	56-64		
Beagle	Beagle Mid Shelf 13	2018	60-66		
Beagle	Beagle Mid Shelf 14	2018	61-66		
Beagle	Beagle Mid Shelf 15	2018	63-66		

Beagle	Beagle Mid Shelf 16	2018	60-68
Beagle	Beagle Mid Shelf 17	2018	57-62
Tasman Fracture	Southwest Mew Stone	2015	93-137

Appendix B: Example images from sites

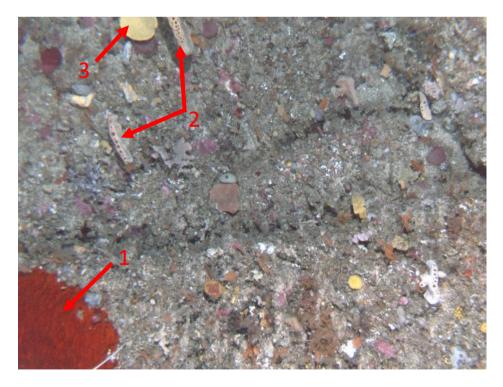
Huon Marine Park site 1


Example imagery from Huon Marine Park site 1

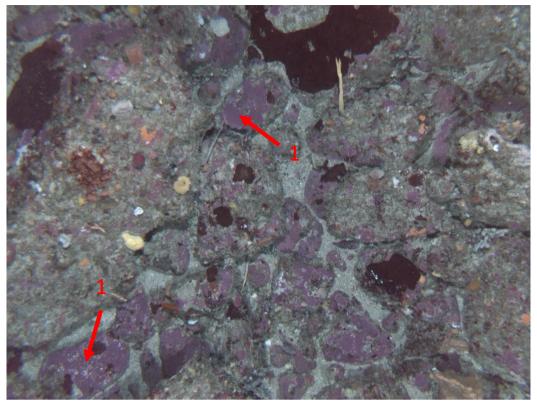

Non-calcareous encrusting red algae (1), encrusting orange sponge (2), thick blue cup sponge (3)

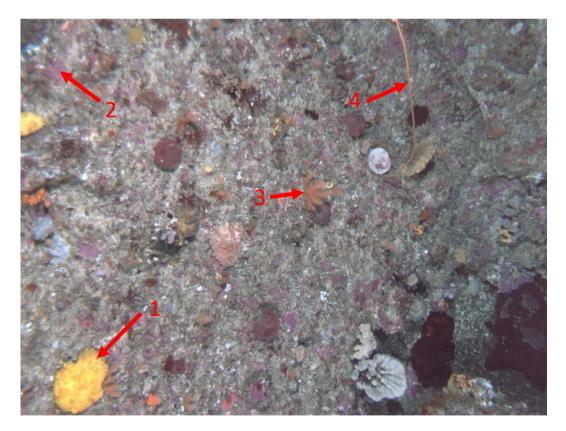
Soft bryozoans (1), palmate grey sponge (2) and a variety of other sponges

Sea whips (1), orange fan sponges (2), cup red smooth sponges (3) and red gorgonians (4)

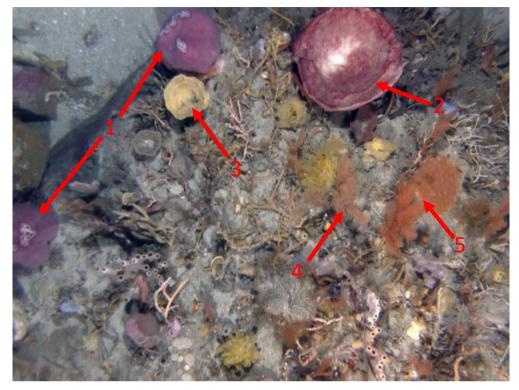


A variety of massive and encrusting sponges, soft bryozoans (1) and a rock lobster (2)


Huon Marine Park site 2 Example images from Huon Marine Park site 2

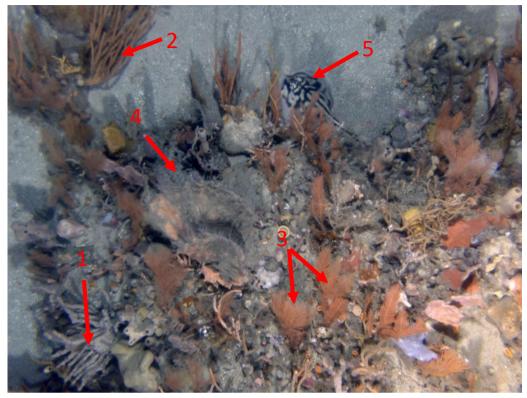

Massive orange sponges (1), cup red smooth sponges (2), red gorgonians (3) and sea whips (4)

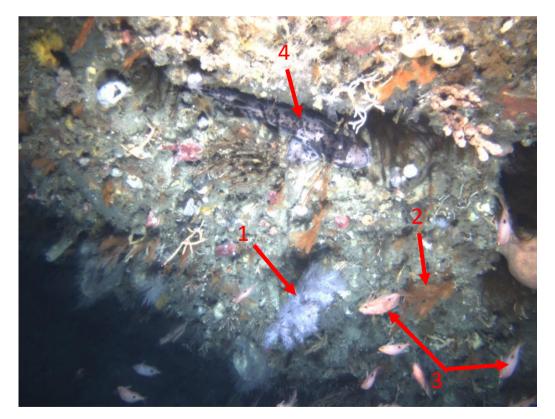
Encrusting orange sponge (1), peach fan sponges (2), yellow cup sponges (3)



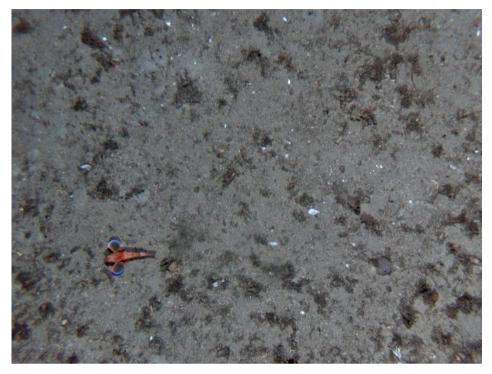
Encrusting coralline algae (1) and a variety of sponges

Massive yellow papillate sponges (1), encrusting coralline algae (2), red gorgonian (3), and sea whip (4)


Joe's Reef Example images from Bicheno Offshore (Joe's Reef)


Massive purple sponges (1), red (2) and yellow (3) cup sponges, red gorgonians (4) and encrusting orange sponge (5)

Massive purple sponges (1), barrel sponges covered with yellow zoanthid colonial anemones (2) and encrusting orange sponge (3)

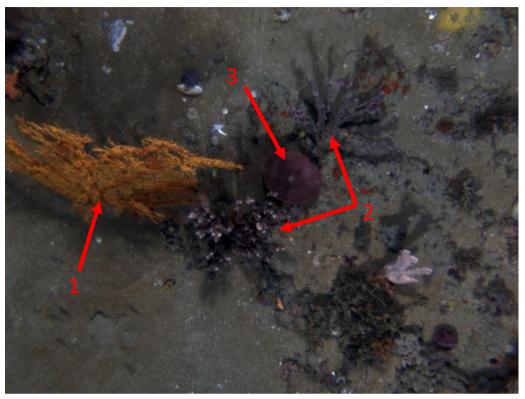


Arborescent grey (1) and orange (2) sponges, red gorgonians (3), hydroid white (4) and a banded stingaree (5)

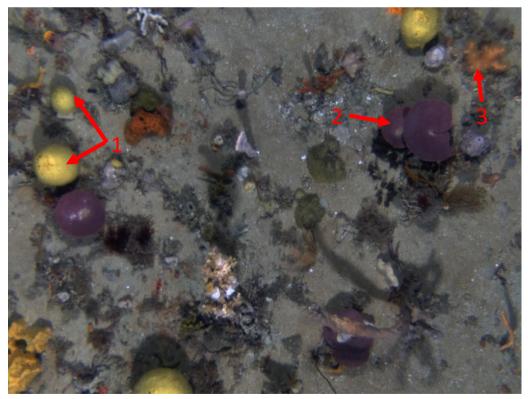
Variety of sponges, black coral (1), red gorgonians (2), butterfly perch (3) and a "sleepy joe" draughtboard shark (4)

Freycinet Marine Park site 2 Example images from Freycinet Marine Park site 2

Soft bryozoans and "flying" red gurnard



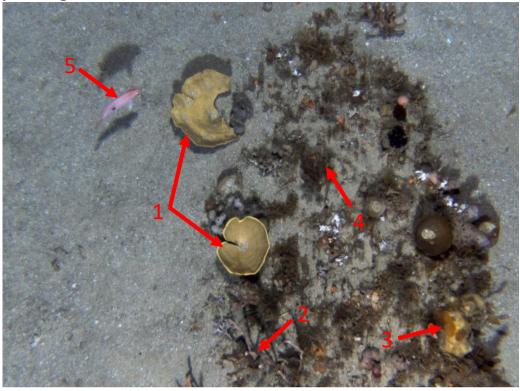
Soft bryozoans and sponges



Bryozoans (1) and sea pen (2)

Flinders Northwest Example images from Flinders Northwest

Large gorgonian fan (1), arborescentt grey sponges (2) and red cup smooth cup sponge (3)

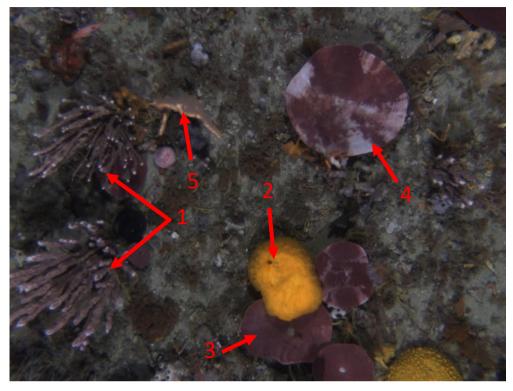


Massive yellow ball sponges (1), red cup smooth sponges (2) and soft coral (3)

Cup red smooth sponges (1), pink cup sponges (2), soft corals (3) and gorgonians (4)

Flinders Outer Patch Reef Example images from Flinders Outer Patch Reef

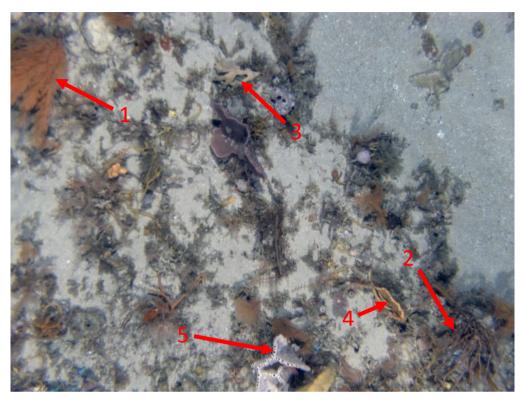
Yellow cup sponges (1), arborescent grey sponge (2), massive yellow sponge (3), soft bryozoans (4) and a butterfly perch (5)



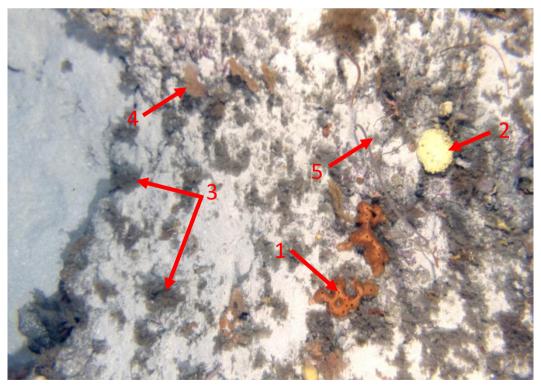
A variety of sponges, soft bryozoans (1) and ascidians (2) on the edge of a low relief ledge feature

Diverse sponge and bryozoan community on a higher relief ledge feature

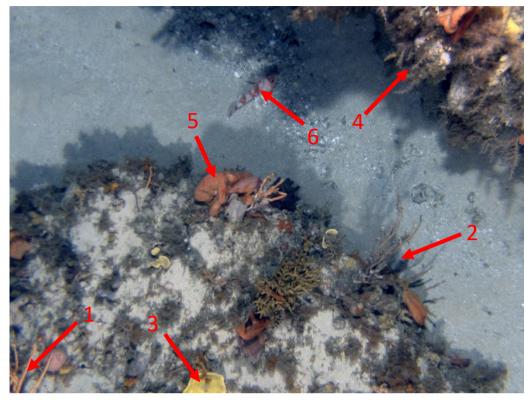
Flinders Western Boundary Example images from Flinders Western Boundary

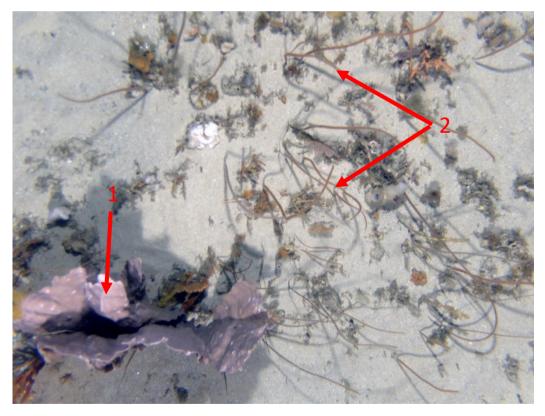


Arborescent grey sponges (1), yellow massive papillate sponges (2), cup red smoothsponges (3) including one showing bleaching (4), and orange fan sponge (5)



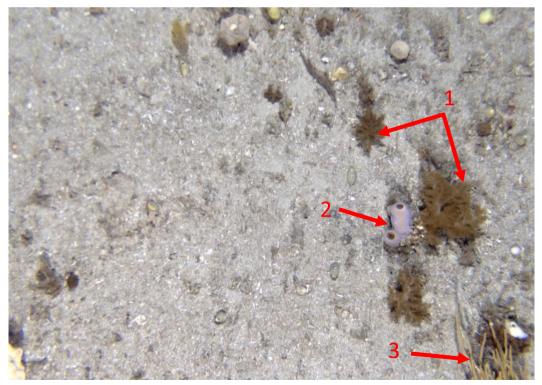
Arborescent grey sponges (1), yellow massive papillate sponges (2), cup red smooth sponges (3) and grey tubular sponges (4)


Flinders Shallow Grids Example images from Flinders Shallow Grids

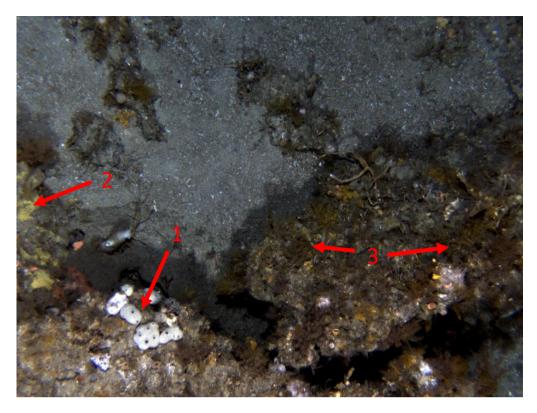

Red gorgonians (1), arborescent grey (2) and yellow sponges (3) and laminar orange (4) and white (5) sponges

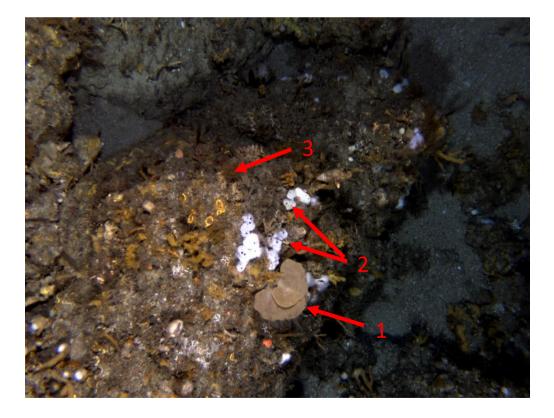
Orange (1) and yellow (2) massive sponges, soft bryozoans (3), red gorgonians (4) and sea whips (5)

Orange (1) and grey (2) arborescent sponges (1), yellow cup sponge (3), bramble coral (4), massive orange sponge (5) and an ocean perch (6)



Large pink fan sponge (1) and sea whips (2)


Flinders Canyon Grids North Example images from Flinders Canyon Grids North


Massive whie sponges (1), encrusting yellow sponge (2), soft bryozoans (3) and a red gurnard perch resting in a white barrel sponge (4)

Soft corals (1), tubular grey sponges (2) and arborescent yellow sponge (3)

Massive white lumpy sponges (1), encrusting yellow sponge (2) and soft bryozoans (3)

Brown cup sponge (1), massive white lumpy sponges (2) and soft bryozoans (3)

Beagle Mid Shelf 3 Example images from Beagle Mid Shelf 3

Pink fan sponges (1), arborescent sponges (2) and hard (3) and soft (4) bryozoans

Fan sponge (1), massive purple (2) and orange (3) sponges and purple stalked ascidian (4)

Large hard bryozoan (1) amongst shell and pebble

Port Jackson sharks

Appendix C: Potential indicators for the SE Marine Parks Network

Widespread indicators									
Indicator	AMPs present	Has sites with relatively high cover (> 0.5%)	Low temporal variability	Long lived	Currently appears to be relatively stable	Likely to respond to warming	Likely to respond to trawling/po tting	Likely to respond to storm events	Potential to be easily identified with AI
Structure forming sponges (erect, massive, fan, cup) and corals	Tas Fracture, Huon, Freycinet, Flinders, Beagle	Yes	?	Yes	?	?	Yes	Yes	?
Cup Red Smooth	Tas Fracture (?), Huon, Freycinet, Flinders	Yes	Yes	Yes	Yes	Yes (bleaching)	Yes	?	Yes
Arborescent Orange	Tas Fracture, Huon, Freycinet, Flinders, Beagle	Yes	?	?	Yes	?	Yes	Yes	Yes
Arborescent Grey	Tas Fracture (?), Huon, Freycinet, Flinders	Yes	?	?	Yes	?	Yes	Yes	Yes
Cup Yellow	Tas Fracture (?), Huon, Freycinet, Flinders	No	Yes	Yes	Yes	Yes	Yes	?	Yes
Massive Purple	Tas Fracture (?), Huon, Freycinet, Flinders	Yes (?)	Yes	?	Yes	?	Yes	Yes	Yes
Gorgonian Red	Tas Fracture (?), Huon, Freycinet, Flinders	Yes	No	No (appe ars to have short lifespa n)	No	Yes	Yes	?	Yes
Palmate grey sponge	Huon (2), Freycinet (1),	Yes (Huon only)	?	?	?	Yes	Yes	Yes	

	Flinders (4)								
Bryozoa hard stumpy	Flinders (4)	Yes (Flinders only)	?	?	Yes	Yes	?	Yes	
Bramble coral (A. kareni)	Flinders (4), Freycinet (1)	Yes (Flinders only and last survey has low cover)	No	?	Yes	Yes	?	?	
Encrusting coralline algae	Huon (2)	Yes	Yes	?	Yes	No	No	Yes	
Large gorgonian fans (e.g. Mopsella sp.)	Flinders (4), Freycinet (1), Beagle (1)	No	Yes	Yes	Yes	Yes	?	Yes	
Large black corals	Freycinet (1)	No	Yes	Yes	Yes	Yes	?	Yes	
Soft coral (Capnella like)	Flinders (2), Huon (2)	No	?	?	Yes	Yes	Yes	Yes	
Bramble coral (Acabaria sp.)	Flinders (3), Beagle (1)	No	?	?	Yes	Yes	Yes	Yes	
Laminar grey fungi sponge	Huon (2), Flinders (2), Beagle (1)	No	?	?	?	Yes	Yes	Yes	

	Local indicators									
Indicator	AMPs present (number of sites in brackets)	Has sites with relatively high cover (> 0.5%)	Low temporal variability	Long lived	Currently appears to be relatively stable	Likely to respond	Likely to respond to trawling/potting	Likely to respond to storm events	Potential to be easily identified with Al	
	Huon (2), Freycinet (1), Flinders (4)	Yes (Huon only)	?	?	Yes	?	Yes	Yes	Yes	
Bryozoa hard stumpy	Flinders (4)	Yes (Flinders only)	?	?	Yes	Yes	Yes	?	Yes	
Bramble coral (A. kareni)	Flinders (4), Freycinet (1)	Yes (Flinders only and last survey has low cover)	No	No (appears to have short lifespan)	No	Yes	Yes	?	?	
Encrusting coralline algae	Huon (2)	Yes	Yes	?	Yes	Yes	No	No	Yes	
Large gorgonian fans (e.g. Mopsella sp.)	Flinders (4), Freycinet (1), Beagle (1)	No	Yes	Yes	Yes(?)	Yes	Yes	?	Yes	
Large black corals	Freycinet (1)	No	Yes	Yes	Yes(?)	Yes	Yes	?	Yes	
Soft coral (Capnella like)	Flinders (2), Huon (2)	No	?	?	Yes(?)	Yes	Yes	Yes	Yes	
Bramble coral (Acabaria sp.)	Flinders (3), Beagle (1)	No	?	?	No	Yes	Yes	Yes	Yes	
Laminar grey fungi sponge	Huon (2), Flinders (2), Beagle (1)	No	?	?	?	?	Yes	Yes	Yes	

References

- Alderslade, P. 1998. Revisionary systematics in the gorgonian family Isididae, with descriptions of numerous new taxa (Coelenterata: Octocorallia). Western Australian Museum.
- Althaus, F., N. Hill, R. Ferrari, L. Edwards, R. Przeslawski, C. H. Schonberg, R. Stuart-Smith, N. Barrett, G. Edgar, J. Colquhoun, M. Tran, A. Jordan, T. Rees, and K. Gowlett-Holmes. 2015. A
 Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme. Plos One 10:e0141039.
- Andersen, E. M., R. J. Steidl, and F. Michalski. 2019. Power to detect trends in abundance within a distance sampling framework. Journal of Applied Ecology **57**:344-353.
- Cerrano, C., A. Bastari, B. Calcinai, C. Di Camillo, D. Pica, S. Puce, L. Valisano, and F. Torsani. 2019. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. The European Zoological Journal **86**:370-388.
- Cerrano, C., G. Magnino, A. Sarà, G. Bavestrello, and E. Gaino. 2001. Necrosis in a population of Petrosia ficiformis (Porifera, Demospongiae) in relation with environmental stress. Italian Journal of Zoology **68**:131-136.
- Garrabou, J., R. Coma, N. Bensoussan, M. Bally, P. ChevaldonnÉ, M. Cigliano, D. Diaz, J. G. Harmelin, M. C. Gambi, D. K. Kersting, J. B. Ledoux, C. Lejeusne, C. Linares, C. Marschal, T. PÉRez, M. Ribes, J. C. Romano, E. Serrano, N. Teixido, O. Torrents, M. Zabala, F. Zuberer, and C. Cerrano. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology **15**:1090-1103.
- Hayes, K. R., J. M. Dambacher, G. R. Hosack, N. J. Bax, P. K. Dunstan, E. Fulton, P. A. Thompson, J. R. Hartog, A. J. Hobday, R. Bradford, S. D. Foster, P. Hedge, D. C. Smith, and C. M. Marshall. 2015. Identifying indicators and essential variables for marine ecosystems. Ecological Indicators 57:409-419.
- Heath, J. P. 2006. Quantifying temporal variability in population abundances. Oikos **115**:573-581.
- Lab, C. E. 2011. Two Year Post-Construction Survey of the Deep Reef Habitat at the Entrance to Port Phillip Bay.
- Larsen, D. P., T. M. Kincaid, S. E. Jacobs, and N. S. Urquhart. 2001. Designs for evaluating local and regional scale trends. BioScience **51**:1069-1078.
- Miller, A. N., and K. B. Strychar. 2010. Effects of Heat and Salinity Stress on the Sponge *Cliona Celata*. International Journal of Biology **2**:3-16.
- Monk, J., N. S. Barrett, D. Peel, E. Lawrence, N. A. Hill, V. Lucieer, and K. R. Hayes. 2018. An evaluation of the error and uncertainty in epibenthos cover estimates from AUV images collected with an efficient, spatially-balanced design. Plos One **13**:e0203827.
- Niemi, G. J., and M. E. McDonald. 2004. Application of ecological indicators. Annual Review of Ecology Evolution and Systematics **35**:89-111.
- Noss, R. F. 1990. Indicators for monitoring biodiversity a heirachical approach. Conservation Biology **4**:355-364.
- Oliver, E. C. J., V. Lago, A. J. Hobday, N. J. Holbrook, S. D. Ling, and C. N. Mundy. 2018. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Progress in Oceanography **161**:116-130.
- Oliver, E. C. J., S. J. Wotherspoon, M. A. Chamberlain, and N. J. Holbrook. 2014. Projected Tasman Sea extremes in sea surface temperature through the 21st century. Journal of Climate **27**:1980-1998.
- Perkins, N. R., S. D. Foster, N. A. Hill, and N. S. Barrett. 2016. Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs Estuarine Coastal and Shelf Science **176**:36-46.
- Perkins, N. R., S. D. Foster, N. A. Hill, M. P. Marzloff, and N. S. Barrett. 2017. Temporal and spatial variability in the cover of deep reef species: Implications for monitoring. Ecological Indicators **77**:337-347.

- Perkins, N. R., G. R. Hosack, S. D. Foster, N. A. Hill, and N. S. Barrett. 2018. Spatial properties of sessile benthic organisms and the design of repeat visual survey transects. Aquatic conservation: marine and freshwater ecosystems **29**:59-71.
- Perkins, N. R., G. R. Hosack, S. D. Foster, J. Monk, and N. S. Barrett. 2020a. Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery. Plos One **15**.
- Perkins, N. R., M. Prall, A. Chakraborty, J. W. White, M. L. Baskett, and S. G. Morgan. 2020b. Quantifying the statistical power of monitoring programs for marine protected areas. Ecological Applications **e2215**.
- Pivotto, I. D., D. Nerini, M. Masmoudi, H. Kara, L. Chaoui, and D. Aurelle. 2015. Highly contrasted responses of Mediterranean octocorals to climate change along a depth gradient. R Soc Open Sci **2**:140493.
- Ridgeway, K. R. 2007. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters **34**.
- Sims, M., D. A. Elston, M. P. Harris, and S. Wanless. 2007. Incorporating variance uncertainty into a power analysis of monitoring designs. Journal of Agricultural, Biological, and Environmental Statistics 12:236-249.
- Urquhart, N. S. 2012. The role of monitoring design in detecting trend in long-term ecological monitoring studies.*in* R. A. Gitzen, J. J. Millspaugh, A. B. Cooper, and D. S. Licht, editors. Design and Analysis of Long-term Ecological Monitoring Studies. Cambridge University Press.
- Urquhart, N. S., and T. M. Kincaid. 1999. Designs for detecting trend from repeated surveys of ecological resources. Journal of Agricultural, Biological, and Environmental Statistics **4**:404 414.
- Urquhart, N. S., W. S. Overton, and D. S. Birkes. 1993. Comparing sampling designs for monitoring ecological status and trends: Impact of temporal patterns. Pages 71-85 Statistics for the environment. Wiley, Lisbon, Portugal.
- Usher, K. M. 2008. The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology **29**:178-192.